Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 19(1): 2374979, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38970823

RESUMO

TET1/2/3 dioxygenases iteratively demethylate 5-methylcytosine, beginning with the formation of 5-hydroxymethylcytosine (5hmC). The post-mitotic brain maintains higher levels of 5hmC than most peripheral tissues, and TET1 ablation studies have underscored the critical role of TET1 in brain physiology. However, deletion of Tet1 precludes the disentangling of the catalytic and non-catalytic functions of TET1. Here, we dissect these functions of TET1 by comparing adult cortex of Tet1 wildtype (Tet1 WT), a novel Tet1 catalytically dead mutant (Tet1 HxD), and Tet1 knockout (Tet1 KO) mice. Using DNA methylation array, we uncover that Tet1 HxD and KO mutations perturb the methylation status of distinct subsets of CpG sites. Gene ontology (GO) analysis on specific differential 5hmC regions indicates that TET1's catalytic activity is linked to neuronal-specific functions. RNA-Seq further shows that Tet1 mutations predominantly impact the genes that are associated with alternative splicing. Lastly, we performed High-performance Liquid Chromatography Mass-Spectrometry lipidomics on WT and mutant cortices and uncover accumulation of lysophospholipids lysophosphatidylethanolamine and lysophosphatidylcholine in Tet1 HxD cortex. In summary, we show that Tet1 HxD does not completely phenocopy Tet1 KO, providing evidence that TET1 modulates distinct cortical functions through its catalytic and non-catalytic roles.


Assuntos
5-Metilcitosina , Córtex Cerebral , Metilação de DNA , Proteínas Proto-Oncogênicas , Animais , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Córtex Cerebral/metabolismo , Camundongos Knockout , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ilhas de CpG , Mutação
2.
Cancer Res Commun ; 3(9): 1888-1898, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37772993

RESUMO

Androgen receptor signaling inhibitors (ARSI) are used to treat castration-resistant prostate cancer (CRPC) to stop a resurgence of androgen receptor (AR) signaling. Despite early success, patients on ARSIs eventually relapse, develop drug resistance, and succumb to the disease. Resistance may occur through intratumoral steroidogenesis mediated by upregulation of aldo-keto reductase family 1C member 3 (AKR1C3). Patients treated with leuprolide (castrate) and those treated with leuprolide plus abiraterone (post-Abi) harbor a reservoir of DHEA-S which could fuel testosterone (T) biosynthesis via AKR1C3 to cause a resurgence of prostate cancer cell growth. We demonstrate that concentrations of DHEA-S found in castrate and post-Abi patients are (i) converted to T in an AKR1C3-dependent manner in prostate cancer cells, and (ii) in amounts sufficient to stimulate AKR1C3-dependent cell growth. We observed this in primary and metastatic prostate cancer cell lines, CWR22PC and DuCaP, respectively. Androgen measurements were made by stable isotope dilution LC-MS/MS. We demonstrate AKR1C3 dependence using stable short hairpin RNA knockdown and pharmacologic inhibitors. We also demonstrate that free DHEA is reduced to 5-androstene-3ß,17ß-diol (5-Adiol) by AKR1C3 and that this is a major metabolite, suggesting that in our cell lines 5-Adiol is a predominant precursor of T. We have identified a mechanism of ARSI resistance common to both primary and metastatic cell lines that is dependent on the conversion of DHEA to 5-Adiol on route to T catalyzed by AKR1C3. SIGNIFICANCE: We show that reservoirs of DHEA-S that remain after ARSI treatment are converted into T in primary and metastatic prostate cancer cells in amounts sufficient to stimulate cell growth. Pharmacologic and genetic approaches demonstrate that AKR1C3 is required for these effects. Furthermore, the route to T proceeds through 5-Adiol. We propose that this is a mechanism of ARSI drug resistance.


Assuntos
Neoplasias da Próstata , Testosterona , Masculino , Humanos , Testosterona/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Congêneres da Testosterona , Androstenos , Sulfato de Desidroepiandrosterona , Membro C3 da Família 1 de alfa-Ceto Redutase
3.
Cancer Res Commun ; 3(3): 371-382, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36875158

RESUMO

Vitamin D deficiency is associated with an increased risk of prostate cancer mortality and is hypothesized to contribute to prostate cancer aggressiveness and disparities in African American populations. The prostate epithelium was recently shown to express megalin, an endocytic receptor that internalizes circulating globulin-bound hormones, which suggests regulation of intracellular prostate hormone levels. This contrasts with passive diffusion of hormones that is posited by the free hormone hypothesis. Here, we demonstrate that megalin imports testosterone bound to sex hormone-binding globulin into prostate cells. Prostatic loss of Lrp2 (megalin) in a mouse model resulted in reduced prostate testosterone and dihydrotestosterone levels. Megalin expression was regulated and suppressed by 25-hydroxyvitamin D (25D) in cell lines, patient-derived prostate epithelial cells, and prostate tissue explants. In patients, the relationships between hormones support this regulatory mechanism, as prostatic DHT levels are higher in African American men and are inversely correlated with serum 25D status. Megalin levels are reduced in localized prostate cancer by Gleason grade. Our findings suggest that the free hormone hypothesis should be revisited for testosterone and highlight the impact of vitamin D deficiency on prostate androgen levels, which is a known driver of prostate cancer. Thus, we revealed a mechanistic link between vitamin D and prostate cancer disparities observed in African Americans. Significance: These findings link vitamin D deficiency and the megalin protein to increased levels of prostate androgens, which may underpin the disparity in lethal prostate cancer in African America men.


Assuntos
Androgênios , Calcifediol , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Neoplasias da Próstata , Deficiência de Vitamina D , Animais , Humanos , Masculino , Camundongos , Negro ou Afro-Americano , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Próstata/metabolismo , Testosterona , Vitamina D/metabolismo
4.
Chem Res Toxicol ; 35(12): 2296-2309, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36399404

RESUMO

1-Nitropyrene (1-NP) and 1,8-dinitropyrene (1,8-DNP) are diesel exhaust constituents and are classified by the International Agency for Research on Cancer as probable (Group 2A) or possible (Group 2B) human carcinogens. These nitroarenes undergo metabolic activation by nitroreduction to result in the formation of DNA adducts. Human aldo-keto reductases (AKRs) 1C1-1C3 catalyze the nitroreduction of 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA), but the extent of AKR contribution toward the nitroreduction of additional nitroarenes, including 1-NP and 1,8-DNP, is currently unknown. In the present study, we investigated the ability of human recombinant AKRs to catalyze 1-NP and 1,8-DNP nitroreduction by measuring the formation of the respective six-electron reduced amine products in discontinuous ultraviolet-reverse phase high-performance liquid chromatography enzymatic assays. We found that AKR1C1-1C3 were able to catalyze the formation of 1-aminopyrene (1-AP) and 1-amino-8-nitropyrene (1,8-ANP) in our reactions with 1-NP and 1,8-DNP, respectively. We determined kinetic parameters (Km, kcat, and kcat/Km) and found that out of the three isoforms, AKR1C1 had the highest catalytic efficiency (kcat/Km) for 1-AP formation, whereas AKR1C3 had the highest catalytic efficiency for 1,8-ANP formation. Use of ultra-performance liquid chromatography high-resolution mass spectrometry verified amine product identity and provided evidence for the formation of nitroso- and hydroxylamino-intermediates in our reactions. Our study expands the role of AKR1C1-1C3, which are expressed in human lung cells, in the metabolic activation of nitroarenes that can lead to DNA adduct formation, mutation, and carcinogenesis.


Assuntos
Aldo-Ceto Redutases , Pirenos , Humanos , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/metabolismo , Aminas , Pirenos/química
5.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35560164

RESUMO

Polycystic ovary syndrome (PCOS) is the most prevalent endocrinopathy in women. A common symptom of PCOS is hyperandrogenism (AE); however, the source of these androgens is uncertain. Aldo-keto reductase family 1 member C3 (AKR1C3) catalyzes the formation of testosterone (T) and 5α-dihydrotestosterone (DHT) in peripheral tissues, which activate the androgen receptor (AR). AKR1C3 is induced by insulin in adipocytes and may be central in driving the AE in PCOS. We elucidated the conversion of both classical and 11-oxygenated androgens to potent androgens in a model of PCOS adipocytes. Using high-performance liquid chromatography (HPLC) discontinuous kinetic assays to measure product formation by recombinant AKR1C3, we found that the conversion of 11-keto-Δ4-androstene-3,17-dione (11K-4AD) to 11-ketotestosterone (11K-T) and 11-keto-5α-androstane-3,17-dione (11K-5AD) to 11-keto-5α-dihydrotestosterone (11K-DHT) were superior to the formation of T and DHT. We utilized a stable isotope dilution liquid chromatography high resolution mass spectrometric (SID-LC-HRMS) assay for the quantification of both classical and 11-oxygenated androgens in differentiated Simpson-Golabi-Behmel syndrome adipocytes in which AKR1C3 was induced by insulin. Adipocytes were treated with adrenal derived 11ß-hydroxy-Δ4-androstene-3,17-dione (11ß-OH-4AD), 11K-4AD, or Δ4-androstene-3,17-dione (4AD). The conversion of 11ß-OH-4AD and 11K-4AD to 11K-T required AKR1C3. We also found that once 11K-T is formed, it is inactivated to 11ß-hydroxy-testosterone (11ß-OH-T) by 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1). Our data reveal a unique role for HSD11B1 in protecting the AR from AE. We conclude that the 11-oxygenated androgens formed in adipocytes may contribute to the hyperandrogenic profile of PCOS women and that AKR1C3 is a potential therapeutic target to mitigate the AE of PCOS.


Assuntos
Androgênios , Síndrome do Ovário Policístico , Adipócitos , Membro C3 da Família 1 de alfa-Ceto Redutase , Androstenos , Di-Hidrotestosterona/farmacologia , Feminino , Humanos , Insulina , Testosterona
6.
J Clin Invest ; 130(1): 466-479, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31815742

RESUMO

Alterations in gut microbiota impact the pathophysiology of several diseases, including cancer. Radiotherapy (RT), an established curative and palliative cancer treatment, exerts potent immune modulatory effects, inducing tumor-associated antigen (TAA) cross-priming with antitumor CD8+ T cell elicitation and abscopal effects. We tested whether the gut microbiota modulates antitumor immune response following RT distal to the gut. Vancomycin, an antibiotic that acts mainly on gram-positive bacteria and is restricted to the gut, potentiated the RT-induced antitumor immune response and tumor growth inhibition. This synergy was dependent on TAA cross presentation to cytolytic CD8+ T cells and on IFN-γ. Notably, butyrate, a metabolite produced by the vancomycin-depleted gut bacteria, abrogated the vancomycin effect. In conclusion, depletion of vancomycin-sensitive bacteria enhances the antitumor activity of RT, which has important clinical ramifications.


Assuntos
Apresentação de Antígeno/efeitos da radiação , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Microbioma Gastrointestinal , Neoplasias Experimentais , Animais , Apresentação de Antígeno/genética , Antígenos de Neoplasias/genética , Butiratos/imunologia , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/patologia , Feminino , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/efeitos da radiação , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/radioterapia
8.
Chem Res Toxicol ; 31(11): 1277-1288, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30406992

RESUMO

3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen detected in diesel exhaust particulate and ambient air pollution. It requires metabolic activation via nitroreduction to promote DNA adduct formation and tumorigenesis. NAD(P)H:quinone oxidoreductase 1 (NQO1) has been previously implicated as the major nitroreductase responsible for 3-NBA activation, but it has recently been reported that human aldo-keto reductase 1C3 (AKR1C3) displays nitroreductase activity toward the chemotherapeutic agent PR-104A. We sought to determine whether AKR1C isoforms could display nitroreductase activity toward other nitrated compounds and bioactivate 3-NBA. Using discontinuous enzymatic assays monitored by UV-HPLC, we determined that AKR1C1-1C3 catalyze three successive two-electron nitroreductions toward 3-NBA to form the reduced product 3-aminobenzanthrone (3-ABA). Evidence of the nitroso- and hydroxylamino- intermediates were obtained by UPLC-HRMS. Km, kcat, and kcat/ Km values were determined for recombinant AKR1C and NQO1 and compared. We found that AKR1C1, AKR1C3, and NQO1 have very similar apparent catalytic efficiencies (8 vs 7 min-1 mM-1) despite the higher kcat of NQO1 (0.058 vs 0.012 min-1). AKR1C1-1C3 possess a Km much lower than that of NQO1, which suggests that they may be more important than NQO1 at the low concentrations of 3-NBA to which humans are exposed. Given that inhalation represents the primary source of 3-NBA exposure, we chose to evaluate the relative importance of AKR1C1-1C3 and NQO1 in human lung epithelial cell lines. Our data suggest that the combined activities of AKR1C1-1C3 and NQO1 contribute equally to the reduction of 3-NBA in A549 and HBEC3-KT cell lines and together represent approximately 50% of the intracellular nitroreductase activity toward 3-NBA. These findings have significant implications for the metabolism of nitrated polycyclic aromatic hydrocarbons and suggest that the hitherto unrecognized nitroreductase activity of AKR1C enzymes should be further investigated.


Assuntos
Poluentes Atmosféricos/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Benzo(a)Antracenos/metabolismo , Células A549 , Ativação Metabólica , Poluentes Atmosféricos/análise , Membro C3 da Família 1 de alfa-Ceto Redutase/antagonistas & inibidores , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Benzo(a)Antracenos/análise , Biocatálise , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Espectrometria de Massas , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
J Vis Exp ; (75): e50433, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23711563

RESUMO

Here we present a workflow to analyze the metabolic profiles for biological samples of interest including; cells, serum, or tissue. The sample is first separated into polar and non-polar fractions by a liquid-liquid phase extraction, and partially purified to facilitate downstream analysis. Both aqueous (polar metabolites) and organic (non-polar metabolites) phases of the initial extraction are processed to survey a broad range of metabolites. Metabolites are separated by different liquid chromatography methods based upon their partition properties. In this method, we present microflow ultra-performance (UP)LC methods, but the protocol is scalable to higher flows and lower pressures. Introduction into the mass spectrometer can be through either general or compound optimized source conditions. Detection of a broad range of ions is carried out in full scan mode in both positive and negative mode over a broad m/z range using high resolution on a recently calibrated instrument. Label-free differential analysis is carried out on bioinformatics platforms. Applications of this approach include metabolic pathway screening, biomarker discovery, and drug development.


Assuntos
Extratos Celulares/análise , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Extratos de Tecidos/análise , Biomarcadores/análise , Análise Química do Sangue/métodos , Linhagem Celular Tumoral , Glioblastoma/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA