Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (159)2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32449710

RESUMO

Liver disease is an escalating global health issue. While liver transplantation is an effective mode of therapy, patient mortality has increased due to shortages in donor organ availability. Organ scarcity also affects the routine supply of human hepatocytes for basic research and the clinic. Therefore, the development of renewable sources of human liver progenitor cells is desirable and is the goal of this study. To be able to effectively generate and deploy human liver progenitors on a large scale, a reproducible hepatic progenitor differentiation system was developed. This protocol aids experimental reproducibility between users in a range of cell cultureware formats and permits differentiations using both, human embryonic and induced pluripotent stem cell lines. These are important advantages over current differentiation systems that will enhance the basic research and may pave the way towards clinical product development.


Assuntos
Diferenciação Celular , Fígado/citologia , Células-Tronco Pluripotentes/citologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Endoderma/citologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Processamento de Imagem Assistida por Computador , Laminina/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Reprodutibilidade dos Testes
2.
J Vis Exp ; (149)2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31380852

RESUMO

The development of renewable sources of liver tissue is required to improve cell-based modelling, and develop human tissue for transplantation. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represent promising sources of human liver spheres. We have developed a serum free and defined method of cellular differentiation to generate three-dimensional human liver spheres formed from human pluripotent stem cells. A potential limitation of the technology is the production of dense spheres with dead material inside. In order to circumvent this, we have employed agarose microwell technology at defined cell densities to control the size of the 3D spheres, preventing the generation of apoptotic and/or necrotic cores.  Notably, the spheres generated by our approach display liver function and stable phenotype, representing a valuable resource for basic and applied scientific research. We believe that our approach could be used as a platform technology to develop further tissues to model and treat human disease and in the future may permit the generation of human tissue with complex tissue architecture.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Células-Tronco Pluripotentes/fisiologia , Contagem de Células , Diferenciação Celular , Meios de Cultura Livres de Soro , Humanos , Esferoides Celulares
3.
Artigo em Inglês | MEDLINE | ID: mdl-29786554

RESUMO

We describe the production of a human induced pluripotent stem cell (iPSC) line, SFCi55-ZsGr, that has been engineered to express the fluorescent reporter gene, ZsGreen, in a constitutive manner. The CAG-driven ZsGreen expression cassette was inserted into the AAVS1 locus and a high level of expression was observed in undifferentiated iPSCs and in cell lineages derived from all three germ layers including haematopoietic cells, hepatocytes and neurons. We demonstrate efficient production of terminally differentiated macrophages from the SFCi55-ZsGreen iPSC line and show that they are indistinguishable from those generated from their parental SFCi55 iPSC line in terms of gene expression, cell surface marker expression and phagocytic activity. The high level of ZsGreen expression had no effect on the ability of macrophages to be activated to an M(LPS + IFNγ), M(IL10) or M(IL4) phenotype nor on their plasticity, assessed by their ability to switch from one phenotype to another. Thus, targeting of the AAVS1 locus in iPSCs allows for the production of fully functional, fluorescently tagged human macrophages that can be used for in vivo tracking in disease models. The strategy also provides a platform for the introduction of factors that are predicted to modulate and/or stabilize macrophage function.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Assuntos
Diferenciação Celular , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Macrófagos/metabolismo , Linhagem da Célula/fisiologia , Camadas Germinativas/crescimento & desenvolvimento , Humanos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29786565

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation (TET) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Assuntos
Hepatócitos/fisiologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Transcriptoma/fisiologia , Caprilatos/farmacologia , Humanos , Ácido Láctico/farmacologia , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Ácido Pirúvico/farmacologia
5.
Stem Cells Int ; 2017: 5946527, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270200

RESUMO

Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 µM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

6.
Arch Toxicol ; 91(11): 3645, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28980015

RESUMO

During manuscript proofing, the following sentence was not deleted in the section "Results" at the end of the paragraph: "Both male and female hepatocytes responded in a similar fashion to cotinine, whereas male hepatocyte function was more sensitive to chrysene, fluorene and naphthalene than female hepatocytes".

7.
Stem Cells Int ; 2017: 4758930, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769981

RESUMO

Cartilage degeneration is associated with degenerative bone and joint processes in severe osteoarthritis (OA). Spontaneous cartilage regeneration is extremely limited. Often the treatment consists of a partial or complete joint implant. Adipose-derived stem cell (ASC) transplantation has been shown to restore degenerated cartilage; however, regenerative differences of ASC would depend on the source of adipose tissue. The infra- and suprapatellar fat pads surrounding the knee offer a potential autologous source of ASC for patients after complete joint substitution. When infrapatellar- and suprapatellar-derived stromal vascular fractions (SVF) were compared, a significantly higher CD105 (+) population was found in the suprapatellar fat. In addition, the suprapatellar SVF exhibited increased numbers of colony formation units and a higher population doubling in culture compared to the infrapatellar fraction. Both the suprapatellar- and infrapatellar-derived ASC were differentiated in vitro into mature adipocytes, osteocytes, and chondrocytes. However, the suprapatellar-derived ASC showed higher osteogenic and chondrogenic efficiency. Suprapatellar-derived ASC transplantation in a severe OA mouse model significantly diminished the OA-associated knee inflammation and cartilage degenerative grade, significantly increasing the production of glycosaminoglycan and inducing endogenous chondrogenesis in comparison with the control group. Overall, suprapatellar-derived ASC offer a potential autologous regenerative treatment for patients with multiple degenerative OA.

9.
Arch Toxicol ; 91(11): 3633-3643, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28510779

RESUMO

The liver is a dynamic organ which is both multifunctional and highly regenerative. A major role of the liver is to process both endo and xenobiotics. Cigarettes are an example of a legal and widely used drug which can cause major health problems for adults and constitute a particular risk to the foetus, if the mother smokes during pregnancy. Cigarette smoke contains a complex mixture of thousands of different xenobiotics, including nicotine and polycyclic aromatic hydrocarbons. These affect foetal development in a sex-specific manner, inducing sex-dependant molecular responses in different organs. To date, the effect of maternal smoking on the foetal liver has been studied in vitro using cell lines, primary tissue and animal models. While these models have proven to be useful, poor cell phenotype, tissue scarcity, batch-to-batch variation and species differences have led to difficulties in data extrapolation toward human development. Therefore, in this study we have employed hepatoblasts, derived from pluripotent stem cells, to model the effects of xenobiotics from cigarette smoke on human hepatocyte development. Highly pure hepatocyte populations (>90%) were produced in vitro and exposed to factors present in cigarette smoke. Analysis of ATP levels revealed that, independent of the sex, the majority of smoking derivatives tested individually did not deplete ATP levels below 50%. However, following exposure to a cocktail of smoking derivatives, ATP production fell below 50% in a sex-dependent manner. This was paralleled by a loss metabolic activity and secretory ability in both female and male hepatocytes. Interestingly, cell depletion was less pronounced in female hepatocytes, whereas caspase activation was ~twofold greater, indicating sex differences in cell death upon exposure to the smoking derivatives tested.


Assuntos
Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Fumar/efeitos adversos , Trifosfato de Adenosina/metabolismo , Diferenciação Celular , Células Cultivadas , Cotinina/toxicidade , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Feminino , Humanos , Masculino , Células-Tronco Pluripotentes/citologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fatores Sexuais , alfa-Fetoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA