Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798454

RESUMO

Minimal improvement in outcomes for high-risk pediatric acute myeloid leukemia (pAML) patients has been made in the past decades. Nowhere is this more evident than in patients carrying a t(16;21)(p11;q22) FUS::ERG translocation; quick time to relapse and universal failure of hematopoietic stem cell transplant contribute to one of the lowest survival rates in childhood leukemia. Here, we have identified a unique, defining immune-evasion phenotype in FUS::ERG pAML driven by EZH2 and characterized by loss of MHC class I and II molecules and immune co-stimulatory receptors. This loss of immune engagement, present at diagnosis, allows pervasiveness of blasts that prove resistant to standard treatment. We demonstrate that treatment with the FDA-approved EZH2 inhibitor tazemetostat, in combination with IFN-γ, reverses the phenotype, re-expresses MHC receptor expression, and reduces blast viability. EZH2 inhibitors provide a novel therapeutic option for this high-risk population and may prove a beneficial supplemental treatment for FUS::ERG pAML.

2.
Cancers (Basel) ; 16(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672531

RESUMO

The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.

3.
NPJ Syst Biol Appl ; 10(1): 32, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527998

RESUMO

Acute myeloid leukemia (AML) is prevalent in both adult and pediatric patients. Despite advances in patient categorization, the heterogeneity of AML remains a challenge. Recent studies have explored the use of gene expression data to enhance AML diagnosis and prognosis, however, alternative approaches rooted in physics and chemistry may provide another level of insight into AML transformation. Utilizing publicly available databases, we analyze 884 human and mouse blood and bone marrow samples. We employ a personalized medicine strategy, combining state-transition theory and surprisal analysis, to assess the RNA transcriptome of individual patients. The transcriptome is transformed into physical parameters that represent each sample's steady state and the free energy change (FEC) from that steady state, which is the state with the lowest free energy.We found the transcriptome steady state was invariant across normal and AML samples. FEC, representing active molecular processes, varied significantly between samples and was used to create patient-specific barcodes to characterize the biology of the disease. We discovered that AML samples that were in a transition state had the highest FEC. This disease state may be characterized as the most unstable and hence the most therapeutically targetable since a change in free energy is a thermodynamic requirement for disease progression. We also found that distinct sets of ongoing processes may be at the root of otherwise similar clinical phenotypes, implying that our integrated analysis of transcriptome profiles may facilitate a personalized medicine approach to cure AML and restore a steady state in each patient.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Adulto , Animais , Camundongos , Humanos , Criança , Transcriptoma/genética , Perfilação da Expressão Gênica , Leucemia Mieloide Aguda/genética , Biomarcadores Tumorais/genética , Fenótipo
4.
Haematologica ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299667

RESUMO

As curative therapies for pediatric AML remain elusive, identifying potential new treatment targets is vital. We assessed the cell surface expression of CD74, also known as the MHC-II invariant chain, by multidimensional flow cytometry in 973 patients enrolled in the Children's Oncology Group AAML1031 clinical trial. 38% of pediatric AML patients expressed CD74 at any level and a comparison to normal hematopoietic cells revealed a subset with increased expression relative to normal myeloid progenitor cells. Pediatric AML patients expressing high intensity CD74 typically had an immature immunophenotype and an increased frequency of lymphoid antigen expression. Increased CD74 expression was associated with older patients with lower WBC and peripheral blood blast counts, and was enriched for t(8;21), trisomy 8, and CEBPA mutations. Overall, high CD74 expression was associated with low-risk status, however 26% of patients were allocated to high-risk protocol status and 5-year event free survival was 53%, indicating that a significant number of high expressing patients had poor outcomes. In vitro pre-clinical studies indicate that anti-CD74 therapy demonstrates efficacy against AML cells but has little impact on normal CD34+ cells. Together, we demonstrate that CD74 is expressed on a subset of pediatric AMLs at increased levels compared to normal hematopoietic cells and is a promising target for therapy in expressing patients. Given that nearly half of patients expressing CD74 at high levels experience an adverse event within 5 years, and the availability of CD74 targeting drugs, this represents a promising line of therapy worthy of additional investigation.

5.
Blood Adv ; 8(8): 2005-2017, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38306602

RESUMO

ABSTRACT: MLLT10 gene rearrangements with KMT2A occur in pediatric acute myeloid leukemia (AML) and confer poor prognosis, but the prognostic impact of MLLT10 in partnership with other genes is unknown. We conducted a retrospective study with 2080 children and young adults with AML registered on the Children's Oncology Group AAML0531 (NCT00372593) and AAML1031 trials (NCT01371981). Transcriptome profiling and/or karyotyping were performed to identify leukemia-associated fusions associated with prognosis. Collectively, 127 patients (6.1%) were identified with MLLT10 fusions: 104 (81.9%) with KMT2A::MLLT10, 13 (10.2%) with PICALM::MLLT10, and 10 (7.9%) X::MLLT10: (2 each of DDX3X and TEC), with 6 partners (DDX3Y, CEP164, SCN2B, TREH, NAP1L1, and XPO1) observed in single patients. Patients with MLLT10 (n = 127) demonstrated adverse outcomes, with 5-year event-free survival (EFS) of 18.6% vs 49% in patients without MLLT10 (n = 1953, P < .001), inferior 5-year overall survival (OS) of 38.2% vs 65.7% (P ≤ .001), and a higher relapse risk of 76% vs 38.6% (P < .001). Patients with KMT2A::MLLT10 had an EFS from study entry of 19.5% vs 12.7% (P = .628), and an OS from study entry of 40.4% vs 27.6% (P = .361) in those with other MLLT10 fusion partners. Patients with PICALM::MLLT10 had an EFS of 9.2% vs 20% in other MLLT10- without PICALM (X::MLLT10; P = .788). Patients with PICALM::MLLT10 and X::MLLT10 fusions exhibit a DNA hypermethylation signature resembling NUP98::NSD1 fusions, whereas patients with KMT2A::MLLT10 bear aberrations primarily affecting distal regulatory elements. Regardless of the fusion partner, patients with AML harboring MLLT10 fusions exhibit very high-risk features and should be prioritized for alternative therapeutic interventions.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Criança , Adulto Jovem , Humanos , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição/genética , Leucemia Mieloide Aguda/genética , Prognóstico , Antígenos de Histocompatibilidade Menor , RNA Helicases DEAD-box , Proteína 1 de Modelagem do Nucleossomo
6.
EJHaem ; 5(1): 61-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406504

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) predominantly occurs in adults ≥60 years old; 10-20% of cases are pediatric or adolescent/young adult (AYA) patients. Tagraxofusp (TAG, Elzonris®) is the only approved treatment for BPDCN; in the United States it is approved for patients aged ≥2 years. Data on treating pediatric and AYA BPDCN patients are limited. We present a case series of pediatric and AYA patients with BPDCN treated with TAG. Eight patients (five newly diagnosed; three relapsed/refractory [R/R]), aged 2-21 years, received 12 mcg/kg TAG. Seven patients were female; most had skin (n = 6) and/or bone marrow (n = 4) involvement. No new safety signals were identified. Grade 3 adverse events were headache (n = 1) and transaminitis (n = 2). Three patients with newly diagnosed BPDCN achieved complete response, one achieved partial response, and one had stable disease (SD). One patient with R/R BPDCN achieved a minor response; one had SD. Seven patients (88%) were bridged to stem cell transplant: 80% of newly diagnosed patients and 100% of R/R patients. Five patients remained alive at last follow-up. These cases highlight the efficacy and safety of TAG in pediatric and AYA patients for whom there is no other approved BPDCN therapy.

7.
Blood Adv ; 8(9): 2094-2103, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38295280

RESUMO

ABSTRACT: We sought to define the cooccurring mutational profile of FLT3-ITD-positive (ITDpos) acute myeloid leukemia (AML) in pediatric and young adult patients and to define the prognostic impact of cooperating mutations. We identified 464 patients with FLT3-ITD mutations treated on Children's Oncology Group trials with available sequencing and outcome data. Overall survival, event-free survival (EFS), and relapse risk were determined according to the presence of cooccurring risk stratifying mutations. Among the cohort, 79% of patients had cooccurring alterations across 239 different genes that were altered through mutations or fusions. Evaluation of the prognostic impact of the cooccurring mutations demonstrated that patients with ITDpos AML experienced significantly different outcomes according to the cooccurring mutational profile. Patients with ITDpos AML harboring a cooccurring favorable-risk mutation of NPM1, CEBPA, t(8;21), or inv(16) experienced a 5-year EFS of 64%, which was significantly superior to of 22.2% for patients with ITDpos AML and poor-risk mutations of WT1, UBTF, or NUP98::NSD1 as well to 40.9% for those who lacked either favorable-risk or poor-risk mutation (ITDpos intermediate; P < .001 for both). Multivariable analysis demonstrated that cooccurring mutations had significant prognostic impact, whereas allelic ratio had no impact. Therapy intensification, specifically consolidation transplant in remission, resulted in significant improvements in survival for ITDpos AML. However, patients with ITDpos/NUP98::NSD1 continued to have poor outcomes with intensified therapy, including sorafenib. Cooccurring mutational profile in ITDpos AML has significant prognostic impacts and is critical to determining risk stratification and therapeutic allocation. These clinical trials were registered at www.clinicaltrials.gov as NCT00002798, NCT00070174, NCT00372593, and NCT01371981.


Assuntos
Leucemia Mieloide Aguda , Mutação , Nucleofosmina , Tirosina Quinase 3 Semelhante a fms , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Tirosina Quinase 3 Semelhante a fms/genética , Criança , Prognóstico , Adolescente , Feminino , Masculino , Pré-Escolar , Lactente , Adulto Jovem , Adulto
8.
Clin Cancer Res ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197878

RESUMO

PURPOSE: Comprehensive pharmacogenomics (PGx) evaluation of calicheamicin-pathway to identify predictive PGx markers of response to gemtuzumab ozogamicin (GO) treatment in acute myeloid leukemia (AML). PATIENTS AND METHODS: Single nucleotide polymorphisms (SNPs) in DNA-damage response (DDR) pathway genes were tested for association with event-free survival (EFS), overall-survival (OS), risk of relapse after induction 1 (RR1) in patients treated with standard chemotherapy consisting of Ara-C, Daunorubicin and Etoposide (ADE) with or without addition of GO on COG-AAML03P1 and COG-AAAML0531 trials (ADE+GO, n=755; ADE n=470). SNPs with significant association with any endpoint within ADE+GO arm but not in the ADE arm were tested using multi-SNP modeling to develop DDR_PGx7 Score. RESULTS: Patients with low-DDR_PGx7 score (<0) had significantly worse EFS (HR=1.51, 95%CI (1.21-1.89), P<0.001), worse OS (HR=1.59, 95%CI (1.22-2.08), P<0.001), and higher RR1 (HR=1.87, 95%CI(1.41-2.47), P<0.0001) compared to patients with high-DDR_PGx7 score (≥0) when treated with GO (ADE+GO cohort). However, no difference between low and high DDR_PGx7 score groups was observed for EFS, OS, and RR1 (all P>0.3) in patients treated on ADE arm. CONCLUSIONS: Our results suggest that DDR pathway-based pharmacogenomic score holds potential to predict outcome in patients treated with GO which consists of DNA damaging cytotoxin, calicheamicin. The potential clinical relevance for this score to personalize GO in AML requires further validation in independent and expanded cohorts.

9.
Br J Haematol ; 204(2): 576-584, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37743097

RESUMO

The prognostic impact of PICALM::MLLT10 status in childhood leukaemia is not well described. Ten International Berlin Frankfurt Münster-affiliated study groups and the Children's Oncology Group collaborated in this multicentre retrospective study. The presence of the PICALM::MLLT10 fusion gene was confirmed by fluorescence in situ hybridization and/or RNA sequencing at participating sites. Ninety-eight children met the study criteria. T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML) predominated 55 (56%) and 39 (40%) patients, respectively. Most patients received a chemotherapy regimen per their disease phenotype: 58% received an ALL regimen, 40% an AML regimen and 1% a hybrid regimen. Outcomes for children with PICALM::MLLT10 ALL were reasonable: 5-year event-free survival (EFS) 67% and 5-year overall survival (OS) 76%, but children with PICALM::MLLT10 AML had poor outcomes: 5-year EFS 22% and 5-year OS 26%. Haematopoietic stem cell transplant (HSCT) did not result in a significant improvement in outcomes for PICALM::MLLT10 AML: 5-year EFS 20% for those who received HSCT versus 23% for those who did not (p = 0.6) and 5-year OS 37% versus 36% (p = 0.7). In summary, this study confirms that PICALM::MLLT10 AML is associated with a dismal prognosis and patients cannot be salvaged with HSCT; exploration of novel therapeutic options is warranted.


Assuntos
Leucemia Mieloide Aguda , Proteínas Monoméricas de Montagem de Clatrina , Criança , Humanos , Hibridização in Situ Fluorescente , Estudos Retrospectivos , Proteínas de Fusão Oncogênica/genética , Resultado do Tratamento , Leucemia Mieloide Aguda/genética , Fatores de Transcrição/genética , Doença Aguda , Prognóstico , Proteínas Monoméricas de Montagem de Clatrina/genética
10.
Cancer Cell ; 41(12): 2117-2135.e12, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37977148

RESUMO

Pediatric acute myeloid leukemia (pAML) is characterized by heterogeneous cellular composition, driver alterations and prognosis. Characterization of this heterogeneity and how it affects treatment response remains understudied in pediatric patients. We used single-cell RNA sequencing and single-cell ATAC sequencing to profile 28 patients representing different pAML subtypes at diagnosis, remission and relapse. At diagnosis, cellular composition differed between genetic subgroups. Upon relapse, cellular hierarchies transitioned toward a more primitive state regardless of subtype. Primitive cells in the relapsed tumor were distinct compared to cells at diagnosis, with under-representation of myeloid transcriptional programs and over-representation of other lineage programs. In some patients, this was accompanied by the appearance of a B-lymphoid-like hierarchy. Our data thus reveal the emergence of apparent subtype-specific plasticity upon treatment and inform on potentially targetable processes.


Assuntos
Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , Recidiva
11.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693371

RESUMO

Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.

12.
Cancer Res ; 83(20): 3462-3477, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37584517

RESUMO

Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE: Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.


Assuntos
Leucemia , Neuroblastoma , RNA Longo não Codificante , Adulto , Humanos , Criança , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Neuroblastoma/genética , Leucemia/genética , Genômica , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica
13.
Pediatr Blood Cancer ; 70 Suppl 6: e30584, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37480164

RESUMO

During the past decade, the outcomes of pediatric patients with acute myeloid leukemia (AML) have plateaued with 5-year event-free survival (EFS) and overall survival (OS) of approximately 46 and 64%, respectively. Outcomes are particularly poor for those children with high-risk disease, who have 5-year OS of 46%. Substantial survival improvements have been observed for a subset of patients treated with targeted therapies. Specifically, children with KMT2A-rearranged AML and/or FLT3 internal tandem duplication (FLT3-ITD) mutations benefitted from the addition of gemtuzumab ozogamicin, an anti-CD33 antibody-drug conjugate, in the AAML0531 clinical trial (NCT00372593). Sorafenib also improved response and survival in children with FLT3-ITD AML in the AAML1031 clinical trial (NCT01371981). Advances in characterization of prognostic cytomolecular events have helped to identify patients at highest risk of relapse and facilitated allocation to consolidative hematopoietic stem cell transplant (HSCT) in first remission. Some patients clearly have improved survival with HSCT, although the benefit is largely unknown for most patients. Finally, data-driven refinements in supportive care recommendations continue to evolve with meaningful and measurable reductions in toxicity and improvements in EFS and OS. As advances in application of targeted therapies, risk stratification, and improved supportive care measures are incorporated into current trials and become standard-of-care, there is every expectation that we will see improved survival with a reduction in toxic morbidity and mortality. The research agenda of the Children's Oncology Group's Myeloid Diseases Committee continues to build upon experience and outcomes with an overarching goal of curing more children with AML.


Assuntos
Antineoplásicos , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Criança , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Prognóstico , Sorafenibe/uso terapêutico , Antineoplásicos/uso terapêutico , Gemtuzumab/uso terapêutico , Mutação , Tirosina Quinase 3 Semelhante a fms/genética
14.
Leukemia ; 37(9): 1767-1778, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452102

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that can involve the bone marrow, peripheral blood, skin, lymph nodes, and the central nervous system. Though more common in older adults, BPDCN has been reported across all age groups, including infants and children. The incidence of pediatric BPDCN is extremely low and little is known about the disease. Pediatric BPDCN is believed to be clinically less aggressive but often with more dissemination at presentation than adult cases. Unlike adults who almost always proceed to a hematopoietic stem cell transplantation in first complete remission if transplant-eligible, the majority of children can be cured with a high-risk acute lymphoblastic leukemia-like regimen. Hematopoietic stem cell transplantation is recommended for children with high-risk disease, the definition of which continues to evolve, or those in relapse and refractory settings where outcomes continue to be dismal. Novel agents used in other hematologic malignancies and CD123 targeted agents, including chimeric antigen receptor T-cells and monoclonal/bispecific antibodies, are being brought into research and practice. Our goal is to provide a comprehensive review of presentation, diagnosis, and treatment by review of pediatric cases reported for the last 20 years, and a review of novel targeted therapies and therapies under investigation for adult and pediatric patients.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Criança , Humanos , Adolescente , Adulto Jovem , Idoso , Células Dendríticas/patologia , Neoplasias Hematológicas/patologia , Neoplasias Cutâneas/patologia , Transtornos Mieloproliferativos/patologia
15.
Proteomics Clin Appl ; 17(6): e2200109, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37287368

RESUMO

PURPOSE: The endoplasmic reticulum (ER) is the major site of protein synthesis and folding in the cell. ER-associated degradation (ERAD) and unfolded protein response (UPR) are the main mechanisms of ER-mediated cell stress adaptation. Targeting the cell stress response is a promising therapeutic approach in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: Protein expression levels of valosin-containing protein (VCP), a chief element of ERAD, were measured in peripheral blood samples from in 483 pediatric AML patients using reverse phase protein array methodology. Patients participated in the Children's Oncology Group AAML1031 phase 3 clinical trial that randomized patients to standard chemotherapy (cytarabine (Ara-C), daunorubicin, and etoposide [ADE]) versus ADE plus bortezomib (ADE+BTZ). RESULTS: Low-VCP expression was significantly associated with favorable 5-year overall survival (OS) rate compared to middle-high-VCP expression (81% versus 63%, p < 0.001), independent of additional bortezomib treatment. Multivariable Cox regression analysis identified VCP as independent predictor of clinical outcome. UPR proteins IRE1 and GRP78 had significant negative correlation with VCP. Five-year OS in patients characterized by low-VCP, moderately high-IRE1 and high-GRP78 improved after treatment with ADE+BTZ versus ADE (66% versus 88%, p = 0.026). CONCLUSION AND CLINICAL RELEVANCE: Our findings suggest the potential of the protein VCP as biomarker in prognostication prediction in pediatric AML.


Assuntos
Proteínas de Ciclo Celular , Chaperona BiP do Retículo Endoplasmático , Criança , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Bortezomib/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
16.
Blood Adv ; 7(19): 5851-5859, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37315172

RESUMO

Hematopoietic stem cell transplantation is a well-known treatment for hematologic malignancies, wherein nascent stem cells provide regenerating marrow and immunotherapy against the tumor. The progeny of hematopoietic stem cells also populate a wide spectrum of tissues, including the brain, as bone marrow-derived macrophages similar to microglial cells. We developed a sensitive and novel combined immunohistochemistry (IHC) and XY fluorescence in situ hybridization assay to detect, quantify, and characterize donor cells in the cerebral cortices of 19 female patients who underwent allogeneic stem cell transplantation. We showed that the number of male donor cells ranged from 0.14% to 3.0% of the total cells or from 1.2% to 25% of microglial cells. Using tyramide-based fluorescent IHC, we found that at least 80% of the donor cells expressed the microglial marker ionized calcium-binding adapter molecule-1, consistent with bone marrow-derived macrophages. The percentage of donor cells was related to pretransplantation conditioning; donor cells from radiation-based myeloablative cases averaged 8.1% of microglial cells, whereas those from nonmyeloablative cases averaged only 1.3%. The number of donor cells in patients conditioned with busulfan- or treosulfan-based myeloablation was similar to that in total body irradiation-based conditioning; donor cells averaged 6.8% of the microglial cells. Notably, patients who received multiple transplantations and those with the longest posttransplantation survival had the highest level of donor engraftment, with donor cells averaging 16.3% of the microglial cells. Our work represents the largest study characterizing bone marrow-derived macrophages in patients after transplantation. The efficiency of engraftment observed in our study warrants future research on microglial replacement as a therapeutic option for disorders of the central nervous system.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Feminino , Hibridização in Situ Fluorescente , Transplante de Medula Óssea , Sistema Nervoso Central , Macrófagos
17.
J Clin Oncol ; 41(27): 4447, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37390387
18.
Blood Adv ; 7(19): 5941-5953, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37267439

RESUMO

Somatic mutations in isocitrate dehydrogenase (IDH) genes occur frequently in adult acute myeloid leukemia (AML) and less commonly in pediatric AML. The objective of this study was to describe the prevalence, mutational profile, and prognostic significance of IDH mutations in AML across age. Our cohort included 3141 patients aged between <1 month and 88 years treated on Children's Cancer Group/Children's Oncology Group (n = 1872), Southwest Oncology Group (n = 359), Eastern Cooperative Oncology Group (n = 397) trials, and in Beat AML (n = 333) and The Cancer Genome Atlas (n = 180) genomic characterization cohorts. We retrospectively analyzed patients in 4 age groups (age range, n): pediatric (0-17, 1744), adolescent/young adult (18-39, 444), intermediate-age (40-59, 640), older (≥60, 309). IDH mutations (IDHmut) were identified in 9.2% of the total cohort (n = 288; IDH1 [n = 123, 42.7%]; IDH2 [n = 165, 57.3%]) and were strongly correlated with increased age: 3.4% pediatric vs 21% older, P < .001. Outcomes were similar in IDHmut and IDH-wildtype (IDHWT) AML (event-free survival [EFS]: 35.6% vs 40.0%, P = .368; overall survival [OS]: 50.3% vs 55.4%, P = .196). IDH mutations frequently occurred with NPM1 (47.2%), DNMT3A (29.3%), and FLT3-internal tandem duplication (ITD) (22.4%) mutations. Patients with IDHmut AML with NPM1 mutation (IDHmut/NPM1mut) had significantly improved survival compared with the poor outcomes experienced by patients without (IDHmut/NPM1WT) (EFS: 55.1% vs 17.0%, P < .001; OS: 66.5% vs 35.2%, P < .001). DNTM3A or FLT3-ITD mutations in otherwise favorable IDHmut/NPM1mut AML led to inferior outcomes. Age group analysis demonstrated that IDH mutations did not abrogate the favorable prognostic impact of NPM1mut in patients aged <60 years; older patients had poor outcomes regardless of NPM1 status. These trials were registered at www.clinicaltrials.gov as #NCT00070174, #NCT00372593, #NCT01371981, #NCT00049517, and #NCT00085709.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Adolescente , Adulto Jovem , Humanos , Criança , Lactente , Pré-Escolar , Prognóstico , Isocitrato Desidrogenase/genética , Nucleofosmina , Estudos Retrospectivos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutação
19.
BMC Bioinformatics ; 24(1): 266, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380943

RESUMO

Pathway-level survival analysis offers the opportunity to examine molecular pathways and immune signatures that influence patient outcomes. However, available survival analysis algorithms are limited in pathway-level function and lack a streamlined analytical process. Here we present a comprehensive pathway-level survival analysis suite, PATH-SURVEYOR, which includes a Shiny user interface with extensive features for systematic exploration of pathways and covariates in a Cox proportional-hazard model. Moreover, our framework offers an integrative strategy for performing Hazard Ratio ranked Gene Set Enrichment Analysis and pathway clustering. As an example, we applied our tool in a combined cohort of melanoma patients treated with checkpoint inhibition (ICI) and identified several immune populations and biomarkers predictive of ICI efficacy. We also analyzed gene expression data of pediatric acute myeloid leukemia (AML) and performed an inverse association of drug targets with the patient's clinical endpoint. Our analysis derived several drug targets in high-risk KMT2A-fusion-positive patients, which were then validated in AML cell lines in the Genomics of Drug Sensitivity database. Altogether, the tool offers a comprehensive suite for pathway-level survival analysis and a user interface for exploring drug targets, molecular features, and immune populations at different resolutions.


Assuntos
Leucemia Mieloide Aguda , Melanoma , Criança , Humanos , Reposicionamento de Medicamentos , Oncologia , Melanoma/tratamento farmacológico , Melanoma/genética , Algoritmos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
20.
Nat Commun ; 14(1): 1739, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019972

RESUMO

Oncogenic fusions formed through chromosomal rearrangements are hallmarks of childhood cancer that define cancer subtype, predict outcome, persist through treatment, and can be ideal therapeutic targets. However, mechanistic understanding of the etiology of oncogenic fusions remains elusive. Here we report a comprehensive detection of 272 oncogenic fusion gene pairs by using tumor transcriptome sequencing data from 5190 childhood cancer patients. We identify diverse factors, including translation frame, protein domain, splicing, and gene length, that shape the formation of oncogenic fusions. Our mathematical modeling reveals a strong link between differential selection pressure and clinical outcome in CBFB-MYH11. We discover 4 oncogenic fusions, including RUNX1-RUNX1T1, TCF3-PBX1, CBFA2T3-GLIS2, and KMT2A-AFDN, with promoter-hijacking-like features that may offer alternative strategies for therapeutic targeting. We uncover extensive alternative splicing in oncogenic fusions including KMT2A-MLLT3, KMT2A-MLLT10, C11orf95-RELA, NUP98-NSD1, KMT2A-AFDN and ETV6-RUNX1. We discover neo splice sites in 18 oncogenic fusion gene pairs and demonstrate that such splice sites confer therapeutic vulnerability for etiology-based genome editing. Our study reveals general principles on the etiology of oncogenic fusions in childhood cancer and suggests profound clinical implications including etiology-based risk stratification and genome-editing-based therapeutics.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma , Causalidade , Proteínas de Fusão Oncogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA