Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 19(7): 1168-1181, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753553

RESUMO

High-grade serous ovarian cancer (HGSOC) is characterized by chromosomal instability, DNA damage, oxidative stress, and high metabolic demand that exacerbate misfolded, unfolded, and damaged protein burden resulting in increased proteotoxicity. However, the underlying mechanisms that maintain protein homeostasis to promote HGSOC growth remain poorly understood. This study reports that the neuronal deubiquitinating enzyme, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), is overexpressed in HGSOC and maintains protein homeostasis. UCHL1 expression was markedly increased in HGSOC patient tumors and serous tubal intraepithelial carcinoma (HGSOC precursor lesions). High UCHL1 levels correlated with higher tumor grade and poor patient survival. UCHL1 inhibition reduced HGSOC cell proliferation and invasion, as well as significantly decreased the in vivo metastatic growth of ovarian cancer xenografts. Transcriptional profiling of UCHL1-silenced HGSOC cells revealed downregulation of genes implicated with proteasome activity along with upregulation of endoplasmic reticulum stress-induced genes. Reduced expression of proteasome subunit alpha 7 (PSMA7) and acylaminoacyl peptide hydrolase (APEH), upon silencing of UCHL1, resulted in a significant decrease in proteasome activity, impaired protein degradation, and abrogated HGSOC growth. Furthermore, the accumulation of polyubiquitinated proteins in the UCHL1-silenced cells led to attenuation of mTORC1 activity and protein synthesis, and induction of terminal unfolded protein response. Collectively, these results indicate that UCHL1 promotes HGSOC growth by mediating protein homeostasis through the PSMA7-APEH-proteasome axis. IMPLICATIONS: This study identifies the novel links in the proteostasis network to target protein homeostasis in HGSOC and recognizes the potential of inhibiting UCHL1 and APEH to sensitize cancer cells to proteotoxic stress in solid tumors.


Assuntos
Cistadenocarcinoma Seroso/genética , Neoplasias Ovarianas/genética , Peptídeo Hidrolases/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteostase/genética , Ubiquitina Tiolesterase/genética , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Indóis/farmacologia , Estimativa de Kaplan-Meier , Camundongos Nus , Gradação de Tumores , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Oximas/farmacologia , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Cancer Med ; 8(18): 7705-7719, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568691

RESUMO

Despite advances in cancer therapeutics, pancreatic cancer remains difficult to treat and often develops resistance to chemotherapies. We have evaluated a bioavailable genistein analogue, AXP107-11 which has completed phase Ib clinical trial, as an approach to sensitize tumor cells to chemotherapy. Using organotypic cultures of 14 patient-derived xenografts (PDX) of pancreatic ductal adenocarcinoma, we found that addition of AXP107-11 indeed sensitized 57% of cases to gemcitabine treatment. Results were validated using PDX models in vivo. Further, RNA-Seq from responsive and unresponsive tumors proposed a 41-gene treatment-predictive signature. Functional and molecular assays were performed in cell lines and demonstrated that the effect was synergistic. Transcriptome analysis indicated activation of G-protein-coupled estrogen receptor (GPER1) as the main underlying mechanism of action, which was corroborated using GPER1-selective agonists and antagonists. GPER1 expression in pancreatic tumors was indicative of survival, and our study proposes that activation of GPER1 may constitute a new avenue for pancreatic cancer therapeutics.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Genisteína/farmacologia , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Genisteína/análogos & derivados , Genisteína/uso terapêutico , Humanos , Camundongos , Modelos Biológicos , Mucina-1/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
3.
PLoS One ; 12(2): e0172832, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235006

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive, highly recurrent breast cancer subtype, affecting approximately one-fifth of all breast cancer patients. Subpopulations of treatment-resistant cancer stem cells within the tumors are considered to contribute to disease recurrence. A potential druggable target for such cells is the maternal embryonic leucine-zipper kinase (MELK). MELK expression is upregulated in mammary stem cells and in undifferentiated cancers, where it correlates with poor prognosis and potentially mediates treatment resistance. Several MELK inhibitors have been developed, of which one, OTSSP167, is currently in clinical trials. In order to better understand how MELK and its inhibition influence TNBC, we verified its anti-proliferative and apoptotic effects in claudin-low TNBC cell lines MDA-MB-231 and SUM-159 using MTS assays and/or trypan blue viability assays together with analysis of PARP cleavage. Then, using microarrays, we explored which genes were affected by OTSSP167. We demonstrate that different sets of genes are regulated in MDA-MB-231 and SUM-159, but in both cell lines genes involved in cell cycle, mitosis and protein metabolism and folding were regulated. We identified p53 (TP53) as a potential upstream regulator of the regulated genes. Using western blot we found that OTSSP167 downregulates mutant p53 in all tested TNBC cell lines (MDA-MB-231, SUM-159, and BT-549), but upregulates wild-type p53 in the luminal A subtype MCF-7 cell line. We propose that OTSSP167 might have context-dependent or off-target effects, but that one consistent mechanism of action could involve the destabilization of mutant p53.


Assuntos
Proteínas Mutantes/efeitos dos fármacos , Naftiridinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/efeitos dos fármacos , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Análise Mutacional de DNA , Bases de Dados Factuais , Feminino , Humanos , Células MCF-7 , Glândulas Mamárias Humanas/citologia , Mitose , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Células-Tronco/citologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regulação para Cima
4.
Oncotarget ; 7(27): 42159-42171, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27283988

RESUMO

Colon cancer is a common cause of cancer death in the Western world. Accumulating evidence supports a protective role of estrogen via estrogen receptor beta (ERß) but the mechanism of action is not known. Here, we elucidate a molecular mechanism whereby ERß represses the oncogenic prospero homebox 1 (PROX1) through the upregulation of miR-205. We show that PROX1 is a potential target of miR-205 and that in clinical specimens from The Cancer Genome Atlas data, ERß and miR-205 are decreased in colorectal cancer tissue compared to non-tumorous colon, while PROX1 levels are increased. Through mechanistic studies in multiple colorectal cancer cell lines, we show that ERß upregulates miR-205, and that miR-205 targets and represses PROX1 through direct interaction with its 3'UTR. Through the generation of intestine-specific ERß knockout mice, we establish that this pathway is correspondingly regulated in normal intestinal epithelial cells in vivo. Functionally, we demonstrate that miR-205 decreases cell proliferation and decreases migratory and invasive potential of colon cancer cells, leading to a reduction of micrometastasis in vivo. In conclusion, ERß in both normal and cancerous colon epithelial cells upregulates miRNA-205, which subsequently reduces PROX1 through direct interaction with its 3'UTR. This results in reduced proliferative and metastatic potential of the cells. Our study proposes a novel pathway that may be exploited using ERß-selective agonists and/or miR-205-replacement therapy in order to improve preventive and therapeutic approaches against colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , MicroRNAs/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Regiões 3' não Traduzidas , Adenocarcinoma/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Inativação Gênica , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Invasividade Neoplásica , Metástase Neoplásica , Fatores de Transcrição/metabolismo
5.
Invest Ophthalmol Vis Sci ; 57(6): 2689-98, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27196318

RESUMO

PURPOSE: Our previous studies show that human corneal epithelial cells (HCEC) have a functional vitamin D receptor (VDR) and respond to vitamin D by dampening TLR-induced inflammation. Here, we further examined the timing of the cytokine response to combined vitamin D-TLR treatment and used genome-wide microarray analysis to examine the effect of vitamin D on corneal gene expression. METHODS: Telomerase-immortalized HCEC (hTCEpi) were stimulated with polyinosinic-polycytidylic acid (poly[I:C]) and 1,25-dihydroxyvitamin D3 (1,25D3) for 2 to 24 hours and interleukin (IL)-8 expression was examined by quantitative (q)PCR and ELISA. Telomerase-immortalized HCEC and SV40-HCEC were treated with 1,25D3 and used in genome-wide microarray analysis. Expression of target genes was validated using qPCR in both cell lines and primary HCEC. For confirmation of IκBα protein, hTCEpi were treated with 1,25D3 for 24 hours and cell lysates used in an ELISA. RESULTS: Treatment with 1,25D3 increased poly(I:C)-induced IL-8 mRNA and protein expression after 2 to 6 hours. However, when cells were pretreated with 1,25D3 for 24 hours, 1,25D3 decreased cytokine expression. For microarray analysis, 308 genes were differentially expressed by 1,25D3 treatment in hTCEpi, and 69 genes in SV40s. Quantitative (q)PCR confirmed the vitamin D-mediated upregulation of target genes, including nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α (IκBα). In addition to increased transcript levels, IκBα protein was increased by 28% following 24 hours of vitamin D treatment. CONCLUSIONS: Microarray analysis demonstrates that vitamin D regulates numerous genes in HCEC and influences TLR signaling through upregulation of IκBα. These findings are important in dissecting the role of vitamin D at the ocular surface and highlight the need for further research into the functions of vitamin D and its influence on corneal gene expression.


Assuntos
Epitélio Corneano/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-8/genética , Ceratite/genética , RNA Mensageiro/genética , Transcrição Gênica , Vitamina D/farmacologia , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Epitélio Corneano/efeitos dos fármacos , Humanos , Interleucina-8/biossíntese , Ceratite/tratamento farmacológico , Ceratite/patologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Análise Serial de Tecidos , Vitaminas/farmacologia
6.
Mol Endocrinol ; 29(11): 1634-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26426411

RESUMO

Estrogen receptor (ER)α-positive tumors are commonly treated with ERα antagonists or inhibitors of estrogen synthesis, but most tumors develop resistance, and we need to better understand the pathways that underlie the proliferative and tumorigenic role of this estrogen-activated transcription factor. We here present the first single-molecule sequencing of the estradiol-induced ERα transcriptome in the luminal A-type human breast cancer cell lines MCF7 and T47D. Sequencing libraries were prepared from the polyadenylated RNA fraction after 8 hours of estrogen or vehicle treatment. Single-molecule sequencing was carried out in biological and technical replicates and differentially expressed genes were defined and analyzed for enriched processes. Correlation analysis with clinical expression and survival were performed, and follow-up experiments carried out using time series, chromatin immunoprecipitation and quantitative real-time PCR. We uncovered that ERα in addition to regulating approximately 2000 protein-coding genes, also regulated up to 1000 long noncoding RNAs (lncRNAs). Most of these were up-regulated, and 178 lncRNAs were regulated in both cell lines. We demonstrate that Long Intergenic Non-protein Coding RNA 1016 (LINC01016) and LINC00160 are direct transcriptional targets of ERα, correlate with ERα expression in clinical samples, and show prognostic significance in relation to breast cancer survival. We show that silencing of LINC00160 results in reduced proliferation, demonstrating that lncRNA expression have functional consequences. Our findings suggest that ERα regulation of lncRNAs is clinically relevant and that their functions and potential use as biomarkers for endocrine response are important to explore.


Assuntos
Neoplasias da Mama/genética , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , RNA Longo não Codificante/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Imunoprecipitação da Cromatina , Feminino , Inativação Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA