Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805175

RESUMO

Close examination of the initial results of cardiovascular cell therapy clinical trials indicates the importance of patient-specific differences on outcomes and the need to optimize or customize cell therapies. The fields of regenerative medicine and cell therapy have transitioned from using heterogeneous bone marrow mononuclear cells (BMMNCs) to mesenchymal stromal cells (MSCs), which are believed to elicit benefits through paracrine activity. Here, we examined MSCs from the BMMNCs of heart failure patients enrolled in the FOCUS-CCTRN trial. We sought to identify differences in MSCs between patients who improved and those who declined in heart function, regardless of treatment received. Although we did not observe differences in the cell profile of MSCs between groups, we did find significant differences in the MSC secretome profile between patients who improved or declined. We conclude that "mining" the MSC secretome may provide clues to better understand the impact of patient characteristics on outcomes after cell therapy and this knowledge can inform future cell therapy trials.


Assuntos
Células-Tronco Mesenquimais , Disfunção Ventricular Esquerda , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Medicina Regenerativa/métodos , Secretoma
2.
Cardiovasc Res ; 118(11): 2428-2436, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34387303

RESUMO

Exogenous cell-based therapy has emerged as a promising new strategy to facilitate repair of hearts damaged by acute or chronic injury. However, the field of cell-based therapy is handicapped by the lack of standardized definitions and terminology, making comparisons across studies challenging. Even the term 'stem cell therapy' is misleading because only a small percentage of cells derived from adult bone marrow, peripheral blood, or adipose tissue meets the accepted haematopoietic or developmental definition of stem cells. Furthermore, cells (stem or otherwise) are dynamic biological products, meaning that their surface-marker expression, phenotypic and functional characteristics, and the products they secrete in response to their microenvironment can change. It is also important to point out that most surface markers are seldom specific for a cell type. In this article, we discuss the lack of consistency in the descriptive terminology used in cell-based therapies and offer guidelines aimed at standardizing nomenclature and definitions to improve communication among investigators and the general public.


Assuntos
Tecido Adiposo , Terapia Baseada em Transplante de Células e Tecidos , Adulto , Humanos , Pulmão , Transplante de Células-Tronco
3.
PLoS Negl Trop Dis ; 9(8): e0003945, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248209

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi (T. cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. METHODOLOGY/PRINCIPAL FINDINGS: ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. CONCLUSIONS/SIGNIFICANCE: In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice.


Assuntos
Tecido Adiposo/citologia , Cardiomiopatias/prevenção & controle , Doença de Chagas/complicações , Células-Tronco Mesenquimais/imunologia , Miocárdio/imunologia , Trypanosoma cruzi/imunologia , Tecido Adiposo/imunologia , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/imunologia , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Feminino , Coração/parasitologia , Imunidade , Interleucina-10/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruzi/fisiologia
4.
J Cell Mol Med ; 18(5): 824-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24528612

RESUMO

Properties of induced pluripotent stem cells (iPSC) have been extensively studied since their first derivation in 2006. However, the modification in reactive oxygen species (ROS) production and detoxification caused by reprogramming still needs to be further elucidated. The objective of this study was to compare the response of iPSC generated from menstrual blood-derived mesenchymal stem cells (mb-iPSC), embryonic stem cells (H9) and adult menstrual blood-derived mesenchymal stem cells (mbMSC) to ROS exposure and investigate the effects of reprogramming on cellular oxidative stress (OS). mbMSC were extremely resistant to ROS exposure, however, mb-iPSC were 10-fold less resistant to H(2)O(2), which was very similar to embryonic stem cell sensitivity. Extracellular production of ROS was also similar in mb-iPSC and H9 and almost threefold lower than in mbMSC. Furthermore, intracellular amounts of ROS were higher in mb-iPSC and H9 when compared with mbMSC. As the ability to metabolize ROS is related to antioxidant enzymes, we analysed enzyme activities in these cell types. Catalase and superoxide dismutase activities were reduced in mb-iPSC and H9 when compared with mbMSC. Finally, cell adhesion under OS conditions was impaired in mb-iPSC when compared with mbMSC, albeit similar to H9. Thus, reprogramming leads to profound modifications in extracellular ROS production accompanied by loss of the ability to handle OS.


Assuntos
Reprogramação Celular , Células-Tronco Mesenquimais/citologia , Estresse Oxidativo , Células-Tronco Pluripotentes/citologia , Adulto , Antioxidantes/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Feminino , Citometria de Fluxo , Humanos , Cariotipagem , Menstruação , Mesoderma/citologia , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA