Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 12: 642237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716790

RESUMO

Zika virus (ZIKV) is a global public health emergency due to its association with microcephaly, Guillain-Barré syndrome, neuropathy, and myelitis in children and adults. A total of 87 countries have had evidence of autochthonous mosquito-borne transmission of ZIKV, distributed across four continents, and no antivirus therapy or vaccines are available. Therefore, several strategies have been developed to target the main mosquito vector, Aedes aegypti, to reduce the burden of different arboviruses. Among such strategies, the use of the maternally-inherited endosymbiont Wolbachia pipientis has been applied successfully to reduce virus susceptibility and decrease transmission. However, the mechanisms by which Wolbachia orchestrate resistance to ZIKV infection remain to be elucidated. In this study, we apply isobaric labeling quantitative mass spectrometry (MS)-based proteomics to quantify proteins and identify pathways altered during ZIKV infection; Wolbachia infection; co-infection with Wolbachia/ZIKV in the A. aegypti heads and salivary glands. We show that Wolbachia regulates proteins involved in reactive oxygen species production, regulates humoral immune response, and antioxidant production. The reduction of ZIKV polyprotein in the presence of Wolbachia in mosquitoes was determined by MS and corroborates the idea that Wolbachia helps to block ZIKV infections in A. aegypti. The present study offers a rich resource of data that may help to elucidate mechanisms by which Wolbachia orchestrate resistance to ZIKV infection in A. aegypti, and represents a step further on the development of new targeted methods to detect and quantify ZIKV and Wolbachia directly in complex tissues.

2.
PLoS Negl Trop Dis ; 10(10): e0005034, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27732590

RESUMO

BACKGROUND: Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. RESULTS: Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. CONCLUSION: The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aedes/microbiologia , Autofagia , Bactérias/crescimento & desenvolvimento , Trato Gastrointestinal , Proteínas de Insetos/metabolismo , Insetos Vetores/microbiologia , Polifenóis/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aedes/enzimologia , Aedes/crescimento & desenvolvimento , Aedes/metabolismo , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Proteínas de Insetos/genética , Insetos Vetores/enzimologia , Insetos Vetores/crescimento & desenvolvimento , Insetos Vetores/metabolismo , Masculino
3.
PLoS One ; 9(8): e104878, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25137153

RESUMO

BACKGROUND: Protein Tyrosine Phosphatases (PTPs) are enzymes that catalyze phosphotyrosine dephosphorylation and modulate cell differentiation, growth and metabolism. In mammals, PTPs play a key role in the modulation of canonical pathways involved in metabolism and immunity. PTP1B is the prototype member of classical PTPs and a major target for treating human diseases, such as cancer, obesity and diabetes. These signaling enzymes are, hence, targets of a wide array of inhibitors. Anautogenous mosquitoes rely on blood meals to lay eggs and are vectors of the most prevalent human diseases. Identifying the mosquito ortholog of PTP1B and determining its involvement in egg production is, therefore, important in the search for a novel and crucial target for vector control. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an analysis to identify the ortholog of mammalian PTP1B in the Aedes aegypti genome. We identified eight genes coding for classical PTPs. In silico structural and functional analyses of proteins coded by such genes revealed that four of these code for catalytically active enzymes. Among the four genes coding for active PTPs, AAEL001919 exhibits the greatest degree of homology with the mammalian PTP1B. Next, we evaluated the role of this enzyme in egg formation. Blood feeding largely affects AAEL001919 expression, especially in the fat body and ovaries. These tissues are critically involved in the synthesis and storage of vitellogenin, the major yolk protein. Including the classical PTP inhibitor sodium orthovanadate or the PTP substrate DiFMUP in the blood meal decreased vitellogenin synthesis and egg production. Similarly, silencing AAEL001919 using RNA interference (RNAi) assays resulted in 30% suppression of egg production. CONCLUSIONS/SIGNIFICANCE: The data reported herein implicate, for the first time, a gene that codes for a classical PTP in mosquito egg formation. These findings raise the possibility that this class of enzymes may be used as novel targets to block egg formation in mosquitoes.


Assuntos
Aedes/enzimologia , Genoma de Inseto , Oviposição/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Vitelogeninas/genética , Aedes/efeitos dos fármacos , Aedes/genética , Sequência de Aminoácidos , Animais , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/enzimologia , Feminino , Regulação da Expressão Gênica , Himecromona/análogos & derivados , Himecromona/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ovário/efeitos dos fármacos , Ovário/enzimologia , Oviposição/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Vanadatos/farmacologia , Vitelogeninas/antagonistas & inibidores , Vitelogeninas/biossíntese
4.
PLoS One ; 7(7): e40192, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802955

RESUMO

The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.


Assuntos
Proteína HMGB1/química , Proteínas de Insetos/química , Aedes , Sequência de Aminoácidos , Animais , Núcleo Celular/metabolismo , Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína HMGB1/isolamento & purificação , Dados de Sequência Molecular , Fosforilação , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA