Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Brain ; 146(10): 4158-4173, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37490306

RESUMO

Centronuclear and myotubular myopathies (CNM) are rare and severe genetic diseases associated with muscle weakness and atrophy as well as intracellular disorganization of myofibres. The main mutated proteins control lipid and membrane dynamics and are the lipid phosphatase myotubularin (MTM1), and the membrane remodelling proteins amphiphysin 2 (BIN1) and dynamin 2 (DNM2). There is no available therapy. Here, to validate a novel therapeutic strategy for BIN1- and DNM2-CNM, we evaluated adeno-associated virus-mediated MTM1 (AAV-MTM1 ) overexpression in relevant mouse models. Early systemic MTM1 overexpression prevented the development of the CNM pathology in Bin1mck-/- mice, while late intramuscular MTM1 expression partially reverted the established phenotypes after only 4 weeks of treatment. However, AAV-MTM1 injection did not change the DNM2-CNM mouse phenotypes. We investigated the mechanism of the rescue of the myopathy in BIN1-CNM and found that the lipid phosphatase activity of MTM1 was essential for the rescue of muscle atrophy and myofibre hypotrophy but dispensable for the rescue of myofibre disorganization including organelle mis-position and T-tubule defects. Furthermore, the improvement of T-tubule organization correlated with normalization of key regulators of T-tubule morphogenesis, dysferlin and caveolin. Overall, these data support the inclusion of BIN1-CNM patients in an AAV-MTM1 clinical trial.


Assuntos
Músculo Esquelético , Miopatias Congênitas Estruturais , Proteínas Tirosina Fosfatases não Receptoras , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/genética , Dinamina II/metabolismo , Lipídeos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Proteínas Nucleares/genética , Fenótipo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/genética , Terapia Genética
2.
J Cachexia Sarcopenia Muscle ; 14(4): 1707-1720, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208984

RESUMO

BACKGROUND: Androgens are anabolic steroid hormones that exert their function by binding to the androgen receptor (AR). We have previously established that AR deficiency in limb muscles impairs sarcomere myofibrillar organization and decreases muscle strength in male mice. However, despite numerous studies performed in men and rodents, the signalling pathways controlled by androgens via their receptor in skeletal muscles remain poorly understood. METHODS: Male ARskm-/y (n = 7-12) and female ARskm-/- mice (n = 9), in which AR is selectively ablated in myofibres of musculoskeletal tissue, and male AR(i)skm-/y , in which AR is selectively ablated in post-mitotic skeletal muscle myofibres (n = 6), were generated. Longitudinal monitoring of body weight, blood glucose, insulin, lipids and lipoproteins was performed, alongside metabolomic analyses. Glucose metabolism was evaluated in C2C12 cells treated with 5α-dihydrotestosterone (DHT) and the anti-androgen flutamide (n = 6). Histological analyses on macroscopic and ultrastructural levels of longitudinal and transversal muscle sections were conducted. The transcriptome of gastrocnemius muscles from control and ARskm-/y mice was analysed at the age of 9 weeks (P < 0.05, 2138 differentially expressed genes) and validated by RT-qPCR analysis. The AR (4691 peaks with false discovery rate [FDR] < 0.1) and H3K4me2 (47 225 peaks with FDR < 0.05) cistromes in limb muscles were determined in 11-week-old wild-type mice. RESULTS: We show that disrupting the androgen/AR axis impairs in vivo glycolytic activity and fastens the development of type 2 diabetes in male, but not in female mice. In agreement, treatment with DHT increases glycolysis in C2C12 myotubes by 30%, whereas flutamide has an opposite effect. Fatty acids are less efficiently metabolized in skeletal muscles of ARskm-/y mice and accumulate in cytoplasm, despite increased transcript levels of genes encoding key enzymes of beta-oxidation and mitochondrial content. Impaired glucose and fatty acid metabolism in AR-deficient muscle fibres is associated with 30% increased lysine and branched-chain amino acid catabolism, decreased polyamine biosynthesis and disrupted glutamate transamination. This metabolic switch generates ammonia (2-fold increase) and oxidative stress (30% increased H2 O2 levels), which impacts mitochondrial functions and causes necrosis in <1% fibres. We unravel that AR directly activates the transcription of genes involved in glycolysis, oxidative metabolism and muscle contraction. CONCLUSIONS: Our study provides important insights into diseases caused by impaired AR function in musculoskeletal system and delivers a deeper understanding of skeletal muscle pathophysiological dynamics that is instrumental to develop effective treatment for muscle disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores Androgênicos , Animais , Feminino , Masculino , Camundongos , Androgênios/farmacologia , Androgênios/metabolismo , Di-Hidrotestosterona , Flutamida/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217605

RESUMO

The mechanoenzyme dynamin 2 (DNM2) is crucial for intracellular organization and trafficking. DNM2 is mutated in dominant centronuclear myopathy (DNM2-CNM), a muscle disease characterized by defects in organelle positioning in myofibers. It remains unclear how the in vivo functions of DNM2 are regulated in muscle. Moreover, there is no therapy for DNM2-CNM to date. Here, we overexpressed human amphiphysin 2 (BIN1), a membrane remodeling protein mutated in other CNM forms, in Dnm2RW/+ and Dnm2RW/RW mice modeling mild and severe DNM2-CNM, through transgenesis or with adeno-associated virus (AAV). Increasing BIN1 improved muscle atrophy and main histopathological features of Dnm2RW/+ mice and rescued the perinatal lethality and survival of Dnm2RW/RW mice. In vitro experiments showed that BIN1 binds and recruits DNM2 to membrane tubules, and that the BIN1-DNM2 complex regulates tubules fission. Overall, BIN1 is a potential therapeutic target for dominant centronuclear myopathy linked to DNM2 mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dinamina II/fisiologia , Atrofia Muscular/fisiopatologia , Doenças Musculares/patologia , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Dinamina II/genética , Dinamina II/metabolismo , Humanos , Camundongos , Camundongos Knockout , Ligação Proteica
4.
Mol Ther ; 30(2): 868-880, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-34371181

RESUMO

Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.


Assuntos
Dinamina II , Miopatias Congênitas Estruturais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Regulação para Baixo , Dinamina II/genética , Mamíferos , Camundongos , Músculo Esquelético/metabolismo , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Proteínas do Tecido Nervoso/genética , Fenótipo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Nat Commun ; 12(1): 5809, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608167

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.


Assuntos
Tronco Encefálico/virologia , Pulmão/virologia , Modelos Biológicos , SARS-CoV-2/patogenicidade , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/virologia , Animais , Antivirais/farmacologia , Tronco Encefálico/citologia , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Cricetinae , Imunidade Inata , Inflamação , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Neurônios/virologia , Técnicas de Cultura de Órgãos , Morte Celular Regulada , SARS-CoV-2/efeitos dos fármacos , Tropismo Viral
6.
Mol Ther Methods Clin Dev ; 19: 120-138, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33209958

RESUMO

Friedreich ataxia (FA) is currently an incurable inherited mitochondrial disease caused by reduced levels of frataxin (FXN). Cardiac dysfunction is the main cause of premature death in FA. Adeno-associated virus (AAV)-mediated gene therapy constitutes a promising approach for FA, as demonstrated in cardiac and neurological mouse models. While the minimal therapeutic level of FXN protein to be restored and biodistribution have recently been defined for the heart, it is unclear if FXN overexpression could be harmful. Indeed, depending on the vector delivery route and dose administered, the resulting FXN protein level could reach very high levels in the heart, cerebellum, or off-target organs such as the liver. The present study demonstrates safety of FXN cardiac overexpression up to 9-fold the normal endogenous level but significant toxicity to the mitochondria and heart above 20-fold. We show gradual severity with increasing FXN overexpression, ranging from subclinical cardiotoxicity to left ventricle dysfunction. This appears to be driven by impairment of the mitochondria respiratory chain and ultrastructure, which leads to cardiomyocyte subcellular disorganization, cell death, and fibrosis. Overall, this study underlines the need, during the development of gene therapy approaches, to consider appropriate vector expression level, long-term safety, and biomarkers to monitor such events.

7.
J Clin Endocrinol Metab ; 105(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32835378

RESUMO

PURPOSE: Bardet-Biedl syndrome (BBS) is a ciliopathy with a wide spectrum of symptoms due to primary cilia dysfunction, including genitourinary developmental anomalies as well as impaired reproduction, particularly in males. Primary cilia are known to be required at the following steps of reproduction function: (i) genitourinary organogenesis, (ii) in fetal firing of hypothalamo-pituitary axe, (iii) sperm flagellum structure, and (iv) first zygotic mitosis conducted by proximal sperm centriole. BBS phenotype is not fully understood. METHODS: This study explored all steps of reproduction in 11 French male patients with identified BBS mutations. RESULTS: BBS patients frequently presented with genitourinary malformations, such as cryptorchidism (5/11), short scrotum (5/8), and micropenis (5/8), but unexpectedly, with normal testis size (7/8). Ultrasonography highlighted epididymal cysts or agenesis of one seminal vesicle in some cases. Sexual hormones levels were normal in all patients except one. Sperm numeration was normal in 8 out of the 10 obtained samples. Five to 45% of sperm presented a progressive motility. Electron microscopy analysis of spermatozoa did not reveal any homogeneous abnormality. Moreover, a psychological approach pointed to a decreased self-confidence linked to blindness and obesity explaining why so few BBS patients express a child wish. CONCLUSIONS: Primary cilia dysfunction in BBS impacts the embryology of the male genital tract, especially epididymis, penis, and scrotum through an insufficient fetal androgen production. However, in adults, sperm structure does not seem to be impacted. These results should be confirmed in a greater BBS patient cohort, focusing on fertility.


Assuntos
Síndrome de Bardet-Biedl/fisiopatologia , Doenças dos Genitais Masculinos/fisiopatologia , Adolescente , Adulto , Síndrome de Bardet-Biedl/complicações , Doenças dos Genitais Masculinos/etiologia , Genitália Masculina/fisiopatologia , Humanos , Masculino , Análise do Sêmen , Espermatozoides/ultraestrutura , Adulto Jovem
8.
Nat Neurosci ; 22(11): 1793-1805, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591561

RESUMO

Neuromuscular junction (NMJ) disruption is an early pathogenic event in amyotrophic lateral sclerosis (ALS). Yet, direct links between NMJ pathways and ALS-associated genes such as FUS, whose heterozygous mutations cause aggressive forms of ALS, remain elusive. In a knock-in Fus-ALS mouse model, we identified postsynaptic NMJ defects in newborn homozygous mutants that were attributable to mutant FUS toxicity in skeletal muscle. Adult heterozygous knock-in mice displayed smaller neuromuscular endplates that denervated before motor neuron loss, which is consistent with 'dying-back' neuronopathy. FUS was enriched in subsynaptic myonuclei, and this innervation-dependent enrichment was distorted in FUS-ALS. Mechanistically, FUS collaborates with the ETS transcription factor ERM to stimulate transcription of acetylcholine receptor genes. Co-cultures of induced pluripotent stem cell-derived motor neurons and myotubes from patients with FUS-ALS revealed endplate maturation defects due to intrinsic FUS toxicity in both motor neurons and myotubes. Thus, FUS regulates acetylcholine receptor gene expression in subsynaptic myonuclei, and muscle-intrinsic toxicity of ALS mutant FUS may contribute to dying-back motor neuronopathy.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Degeneração Neural/fisiopatologia , Junção Neuromuscular/metabolismo , Proteína FUS de Ligação a RNA/fisiologia , Adulto , Esclerose Lateral Amiotrófica/patologia , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios Motores/patologia , Fibras Musculares Esqueléticas/patologia , Junção Neuromuscular/patologia , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Receptores Colinérgicos/metabolismo , Adulto Jovem
9.
Exp Eye Res ; 186: 107721, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31302159

RESUMO

Cilia are highly conserved and ubiquitously expressed organelles. Ciliary defects of genetic origins lead to ciliopathies, in which retinal degeneration (RD) is one cardinal clinical feature. In order to efficiently find and design new therapeutic strategies the underlying mechanism of retinal degeneration of three murine model was compared. The rodent models correspond to three emblematic ciliopathies, namely: Bardet-Biedl Syndrome (BBS), Alström Syndrome (ALMS) and CEP290-mediated Leber Congenital Amaurosis (LCA). Scotopic rodent electroretinography (ERG) was used to test the retinal function of mice, Transmitted Electron microscopy (T.E.M) was performed to assess retinal structural defects and real-time PCR for targeted genes was used to monitor the expression levels of the major apoptotic Caspase-related pathways in retinal extracts to identify pathological pathways driving the RD in order to identify potential therapeutic targets. We found that BBS and CEP290-mediated LCA mouse models exhibit perinatal retinal degeneration associated with rhodopsin mislocalization in the photoreceptor and the induction of an Endoplasmic Reticulum (ER) stress. On the other hand, the tested ALMS mouse model, displayed a slower degeneration phenotype, with no Rhodopsin mislocalization nor ER-stress activity. Our data points out that behind the general phenotype of vision loss associated with these ciliopathies, the mechanisms and kinetics of disease progression are different.


Assuntos
Ciliopatias/complicações , Retina , Degeneração Retiniana , Animais , Síndrome de Bardet-Biedl/complicações , Modelos Animais de Doenças , Eletrorretinografia , Amaurose Congênita de Leber/complicações , Camundongos , Retina/metabolismo , Retina/patologia , Retina/fisiopatologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Rodopsina/metabolismo
10.
Sci Transl Med ; 11(484)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894500

RESUMO

Centronuclear myopathies (CNMs) are severe diseases characterized by muscle weakness and myofiber atrophy. Currently, there are no approved treatments for these disorders. Mutations in the phosphoinositide 3-phosphatase myotubularin (MTM1) are responsible for X-linked CNM (XLCNM), also called myotubular myopathy, whereas mutations in the membrane remodeling Bin/amphiphysin/Rvs protein amphiphysin 2 [bridging integrator 1 (BIN1)] are responsible for an autosomal form of the disease. Here, we investigated the functional relationship between MTM1 and BIN1 in healthy skeletal muscle and in the physiopathology of CNM. Genetic overexpression of human BIN1 efficiently rescued the muscle weakness and life span in a mouse model of XLCNM. Exogenous human BIN1 expression with adeno-associated virus after birth also prevented the progression of the disease, suggesting that human BIN1 overexpression can compensate for the lack of MTM1 expression in this mouse model. Our results showed that MTM1 controls cell adhesion and integrin localization in mammalian muscle. Alterations in this pathway in Mtm1 -/y mice were associated with defects in myofiber shape and size. BIN1 expression rescued integrin and laminin alterations and restored myofiber integrity, supporting the idea that MTM1 and BIN1 are functionally linked and necessary for focal adhesions in skeletal muscle. The results suggest that BIN1 modulation might be an effective strategy for treating XLCNM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adesões Focais/patologia , Miopatias Congênitas Estruturais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Animais Recém-Nascidos , Adesões Focais/metabolismo , Humanos , Integrina beta1/metabolismo , Longevidade , Masculino , Camundongos Transgênicos , Força Muscular , Músculos/patologia , Músculos/fisiopatologia , Músculos/ultraestrutura , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/fisiopatologia , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
11.
Hum Mol Genet ; 28(10): 1579-1593, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30576443

RESUMO

Strict regulation of Ca2+ homeostasis is essential for normal cellular physiology. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling basal Ca2+ levels and intracellular Ca2+ store refilling, and abnormal SOCE severely impacts on human health. Overactive SOCE results in excessive extracellular Ca2+ entry due to dominant STIM1 or ORAI1 mutations and has been associated with tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). Both disorders are spectra of the same disease and involve muscle weakness, myalgia and cramps, and additional multi-systemic signs including miosis, bleeding diathesis, hyposplenism, dyslexia, short stature and ichthyosis. To elucidate the physiological consequences of STIM1 over-activation, we generated a murine model harboring the most common TAM/STRMK mutation and characterized the phenotype at the histological, ultrastructural, metabolic, physiological and functional level. In accordance with the clinical picture of TAM/STRMK, the Stim1R304W/+ mice manifested muscle weakness, thrombocytopenia, skin and eye anomalies and spleen dysfunction, as well as additional features not yet observed in patients such as abnormal bone architecture and immune system dysregulation. The murine muscles exhibited contraction and relaxation defects as well as dystrophic features, and functional investigations unraveled increased Ca2+ influx in myotubes. In conclusion, we provide insight into the pathophysiological effect of the STIM1 R304W mutation in different cells, tissues and organs and thereby significantly contribute to a deeper understanding of the pathomechanisms underlying TAM/STRMK and other human disorders involving aberrant Ca2+ homeostasis and affecting muscle, bones, platelets or the immune system.


Assuntos
Transtornos Plaquetários/genética , Dislexia/genética , Ictiose/genética , Transtornos de Enxaqueca/genética , Miose/genética , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Baço/anormalidades , Molécula 1 de Interação Estromal/genética , Animais , Transtornos Plaquetários/fisiopatologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Sinalização do Cálcio/genética , Modelos Animais de Doenças , Dislexia/fisiopatologia , Eritrócitos Anormais , Olho/metabolismo , Olho/patologia , Técnicas de Introdução de Genes , Humanos , Ictiose/patologia , Ictiose/fisiopatologia , Sistema Imunitário/patologia , Proteínas Sensoras de Cálcio Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Transtornos de Enxaqueca/fisiopatologia , Miose/fisiopatologia , Fadiga Muscular/genética , Debilidade Muscular/genética , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação/genética , Miopatias Congênitas Estruturais/fisiopatologia , Proteína ORAI1/genética , Pele/metabolismo , Pele/patologia , Baço/fisiopatologia
12.
Mol Ther ; 26(4): 1082-1092, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29506908

RESUMO

Myotubular myopathy, or X-linked centronuclear myopathy, is a severe muscle disorder representing a significant burden for patients and their families. It is clinically characterized by neonatal and severe muscle weakness and atrophy. Mutations in the myotubularin (MTM1) gene cause myotubular myopathy, and no specific curative treatment is available. We previously found that dynamin 2 (DNM2) is upregulated in both Mtm1 knockout and patient muscle samples, whereas its reduction through antisense oligonucleotides rescues the clinical and histopathological features of this myopathy in mice. Here, we propose a novel approach targeting Dnm2 mRNA. We screened and validated in vitro and in vivo several short hairpin RNA (shRNA) sequences that efficiently target Dnm2 mRNA. A single intramuscular injection of AAV-shDnm2 resulted in long-term reduction of DNM2 protein level and restored muscle force, mass, histology, and myofiber ultrastructure and prevented molecular defects linked to the disease. Our results demonstrate a robust DNM2 knockdown and provide an alternative strategy based on reduction of DNM2 to treat myotubular myopathy.


Assuntos
Dependovirus/genética , Dinamina II/genética , Terapia Genética , Vetores Genéticos/genética , Miopatias Congênitas Estruturais/genética , RNA Interferente Pequeno/genética , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Imuno-Histoquímica , Injeções Intramusculares , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Miopatias Congênitas Estruturais/patologia , Miopatias Congênitas Estruturais/terapia , Fenótipo , Interferência de RNA , RNA Mensageiro , Resultado do Tratamento
13.
Langmuir ; 34(5): 1981-1991, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29334739

RESUMO

In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.

14.
Acta Biomater ; 66: 200-212, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29129788

RESUMO

Polymeric nanoparticles (PNPs) are gaining increasing importance as nanocarriers or contrasting material for preclinical diagnosis by micro-CT scanner. Here, we investigated a straightforward approach to produce a biocompatible, radiopaque, and stable polymer-based nanoparticle contrast agent, which was evaluated on mice. To this end, we used a nanoprecipitation dropping technique to obtain PEGylated PNPs from a preformed iodinated homopolymer, poly(MAOTIB), synthesized by radical polymerization of 2-methacryloyloxyethyl(2,3,5-triiodobenzoate) monomer (MAOTIB). The process developed allows an accurate control of the nanoparticle properties (mean size can range from 140 nm to 200 nm, tuned according to the formulation parameters) along with unprecedented important X-ray attenuation properties (concentration of iodine around 59 mg I/mL) compatible with a follow-up in vivo study. Routine characterizations such as FTIR, DSC, GPC, TGA, 1H and 13C NMR, and finally SEM were accomplished to obtain the main properties of the optimal contrast agent. Owing to excellent colloidal stability against physiological conditions evaluated in the presence of fetal bovine serum, the selected PNPs suspension was administered to mice. Monitoring and quantification by micro-CT showed that iodinated PNPs are endowed strong X-ray attenuation capacity toward blood pool and underwent a rapid and passive accumulation in the liver and spleen. STATEMENT OF SIGNIFICANCE: The design of X-ray contrast agents for preclinical imaging is still highly challenging. To date, the best contrast agents reported are based on iodinated lipids or inorganic materials such as gold. In literature, several attempts were undertaken to create polymer-based X-ray contrast agents, but their applicability in vivo was limited to their low contrasting properties. Polymer-based contrast agents present the advantages of an easy surface modification for future application in targeting. Herein, we develop a novel approach to design polymer-based nanoparticle X-ray contrast agent (polymerization of a highly iodine-loaded monomer (MAOTIB)), leading to an iodine concentration of 59 mg/mL. We showed their high efficiency in vivo in mice, in terms of providing a strong signal in blood and then accumulating in the liver and spleen.


Assuntos
Meios de Contraste/química , Metacrilatos/química , Nanopartículas/química , Ácidos Tri-Iodobenzoicos/química , Microtomografia por Raio-X , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Precipitação Química , Coloides/química , Difusão Dinâmica da Luz , Hidrodinâmica , Metacrilatos/síntese química , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Termogravimetria , Ácidos Tri-Iodobenzoicos/síntese química , Raios X
15.
Cell Death Dis ; 8(11): e3173, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29168801

RESUMO

While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1M5 mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1M5 mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1M5 mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1M5 fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1M5 mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease.


Assuntos
Proteínas de Ciclo Celular/genética , Código das Histonas/genética , Proteínas Associadas aos Microtúbulos/genética , Desenvolvimento Muscular/genética , Fosfoproteínas/genética , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética
16.
Hum Mol Genet ; 25(19): 4170-4185, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27493027

RESUMO

Inappropriate deposition of insoluble aggregates of proteins with abnormal structures is a hallmark of affected organs in protein aggregation disease. Very rare, affected organs avoid aggregation naturally. This concerns atrophic testis in Huntington disease (HD). We aimed to understand how HD testis avoids aggregation. Using HD model R6/1 mice, we demonstrate that affected testis contain rare organelles myelinosomes. Myelinosomes secreted from testis somatic TM4 Sertoli cells provide the release of aggregate-prone mutant, but not normal Huntingtin (Htt) exon1. Myelinosomes also support the release of other aggregate-prone mutant protein responsible for cystic fibrosis (CF), F508delCFTR. The traffic and discharge of myelinosomes is facilitated by multivesicular bodies (MVB)s. Inhibition of MVB excretion induced reversible retention of both misfolded proteins inside TM4 Sertoli cells. We propose that myelinosome-mediated elimination of mutant proteins is an unusual secretory process allowing Sertoli cells getting rid of misfolded proteins to avoid aggregation and to maintain cell proteostasis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Agregação Patológica de Proteínas/genética , Animais , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Proteínas Mutantes/genética , Neurônios/metabolismo , Neurônios/patologia , Organelas/genética , Organelas/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/patologia
17.
Int J Pharm ; 508(1-2): 61-70, 2016 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-27163525

RESUMO

This study reports a novel one-step synthesis of hybrid iron oxide/polypyrrole multifunctional nanoparticles encapsulating hydrophobic drug and decorated with polyethylene glycol. The overall process is based on the in situ chemical oxidative polymerization of pyrrole along with the reduction of ferric chloride (FeCl3) in the presence of ketoprofen as model drug and PEGylated surfactants. The final product is a nanocomposite composed of polypyrrole and a mixture of FeO/Fe2O3. Different concentrations of ketoprofen were encapsulated in the nanocomposite, and were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Encapsulation efficiency of the final product was measured by absorption, which can reach up to 98%. The release experiments confirmed complete drug release after about 3h in PBS solution. Morphological characterization of the nanocomposites was performed by electron microscopy (scanning and transmission electron microscopy) which confirmed the spherical geometry and opaque nature of nanoparticles with average particle size well below 50 nm. The final product is multifunctional system, which could act both as a nanocarrier for drug molecules as well as a contrasting agent. Magnetic relaxometry studies confirmed their possible applications as potential contrast agent in the field of magnetic resonance imaging (MRI).


Assuntos
Sistemas de Liberação de Medicamentos , Compostos Férricos/síntese química , Cetoprofeno/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Polímeros/química , Pirróis/química , Meios de Contraste/síntese química , Meios de Contraste/química , Liberação Controlada de Fármacos , Compostos Férricos/química , Cetoprofeno/administração & dosagem , Nanocompostos/ultraestrutura , Tamanho da Partícula , Polietilenoglicóis/química
18.
Sci Rep ; 6: 25140, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126782

RESUMO

MMP11 overexpression is a bad prognostic factor in various human carcinomas. Interestingly, this proteinase is not expressed in malignant cells themselves but is secreted by adjacent non-malignant mesenchymal/stromal cells, such as cancer associated fibroblasts (CAFs) and adipocytes (CAAs), which favors cancer cell survival and progression. As MMP11 negatively regulates adipogenesis in vitro, we hypothesized that it may play a role in whole body metabolism and energy homeostasis. We used an in vivo gain- (Mmp11-Tg mice) and loss- (Mmp11-/- mice) of-function approach to address the systemic function of MMP11. Strikingly, MMP11 overexpression protects against type 2 diabetes while Mmp11-/- mice exhibit hallmarks of metabolic syndrome. Moreover, Mmp11-Tg mice were protected from diet-induced obesity and display mitochondrial dysfunction, due to oxidative stress, and metabolic switch from oxidative phosphorylation to aerobic glycolysis. This Warburg-like effect observed in adipose tissues might provide a rationale for the deleterious impact of CAA-secreted MMP11, favouring tumor progression. MMP11 overexpression also leads to increased circulating IGF1 levels and the activation of the IGF1/AKT/FOXO1 cascade, an important metabolic signalling pathway. Our data reveal a major role for MMP11 in controlling energy metabolism, and provide new clues for understanding the relationship between metabolism, cancer progression and patient outcome.


Assuntos
Diabetes Mellitus Tipo 2/prevenção & controle , Metaloproteinase 11 da Matriz/metabolismo , Síndrome Metabólica , Animais , Metabolismo Energético , Expressão Gênica , Técnicas de Inativação de Genes , Glicólise , Camundongos , Obesidade/prevenção & controle , Fosforilação Oxidativa
19.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376863

RESUMO

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Assuntos
Transtornos Cognitivos/etiologia , Proteínas de Drosophila/genética , Proteínas de Membrana/genética , Degeneração Neural/etiologia , ATPases Translocadoras de Prótons/genética , Receptores de Superfície Celular/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Deficiência Intelectual/genética , Masculino , Camundongos , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Transtornos Parkinsonianos/genética , Sinapses/metabolismo , Sinapses/fisiologia , Sinapses/ultraestrutura
20.
J Biol Chem ; 290(4): 2419-30, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488665

RESUMO

Src homology and collagen A (ShcA) is an adaptor protein that binds to tyrosine kinase receptors. Its germ line deletion is embryonic lethal with abnormal cardiovascular system formation, and its role in cardiovascular development is unknown. To investigate its functional role in cardiovascular development in mice, ShcA was deleted in cardiomyocytes and vascular smooth muscle cells by crossing ShcA flox mice with SM22a-Cre transgenic mice. Conditional mutant mice developed signs of severe dilated cardiomyopathy, myocardial infarctions, and premature death. No evidence of a vascular contribution to the phenotype was observed. Histological analysis of the heart revealed aberrant sarcomeric Z-disk and M-band structures, and misalignments of T-tubules with Z-disks. We find that not only the ErbB3/Neuregulin signaling pathway but also the baroreceptor reflex response, which have been functionally associated, are altered in the mutant mice. We further demonstrate that ShcA interacts with Caveolin-1 and the costameric protein plasma membrane Ca(2+)/calmodulin-dependent ATPase (PMCA), and that its deletion leads to abnormal dystrophin signaling. Collectively, these results demonstrate that ShcA interacts with crucial proteins and pathways that link Z-disk and costamere.


Assuntos
Costâmeros/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Alelos , Animais , Aorta Torácica/metabolismo , Pressão Sanguínea , Sobrevivência Celular , Distrofina/metabolismo , Ecocardiografia , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Receptor ErbB-3/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA