Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 345(6199): 950-3, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146293

RESUMO

Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Assuntos
Brassica napus/genética , Duplicação Cromossômica , Evolução Molecular , Genoma de Planta , Poliploidia , Sementes/genética , Brassica napus/citologia
2.
Plant J ; 77(4): 511-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24299074

RESUMO

Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation.


Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , Genoma de Planta/genética , Arabidopsis/microbiologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA Bacteriano/genética , DNA de Plantas/genética , Flores/genética , Flores/microbiologia , Técnicas de Inativação de Genes , Técnicas de Transferência de Genes , Genes Reporter , Vetores Genéticos , Mutação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Tumores de Planta , Plantas Geneticamente Modificadas , Recombinação Genética , Transformação Genética
3.
Tunis Med ; 91(1): 59-65, 2013 Jan.
Artigo em Francês | MEDLINE | ID: mdl-23404600

RESUMO

BACKGROUND: Celiac disease (CD) is characterized by a malabsorption syndrom. The bone anomalies are one of the principal complications of this disease. The osteoporosis frequency is high: 3.4% among patients having with CD versus 0.2% in the general population. AIM: To study the bone mineral density during the CD, to compare it to a control group and to determine the anomalies of biochemical markers of bone turn over and level of interleukin 6 cytokin (IL6) in these patients. METHODS: All patients with CD have a measurement of bone mineral density by dual-energy x-ray absorptiometry (DXA), a biological exam with dosing calcemia, vitamin D, parathormone (PTH), the osteoblastic bone formation markers (serum osteocalcin, ALP phosphates alkaline), bone osteoclastic activity (C Télopeptide: CTX) and of the IL6. RESULTS: 42 patients were included, with a median age of 33.6 years. 52. 8% of the patients had a low level of D vitamine associated to a high level of PTH. An osteoporosis was noted in 21.5% of patients. No case of osteoporosis was detected in the control group. The mean level of the CTX, ostéocalcine and the IL6 was higher among patients having an osteoporosis or ostéopenia compared to patients with normal bone (p = 0,017). The factors associated with an bone loss (osteopenia or osteoporosis) were: an age > 30 years, a weight <50 kg, a level of ALP phosphates alkaline > 90 UI/ml, an hypo albuminemia < 40 g/l and a level of CTX higher than 1.2. CONCLUSION: Our study confirms the impact of the CD on the bone mineral statute. The relative risk to have an osteopenia or an osteoporosis was 5 in our series. The measurement of the osseous mineral density would be indicated among patients having a CD.


Assuntos
Reabsorção Óssea , Osso e Ossos/metabolismo , Doença Celíaca/metabolismo , Interleucina-6/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
4.
New Phytol ; 197(3): 730-736, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23278496

RESUMO

The reprogramming of gene expression appears as the major trend in synthetic and natural allopolyploids where expression of an important proportion of genes was shown to deviate from that of the parents or the average of the parents. In this study, we analyzed gene expression changes in previously reported, highly stable synthetic wheat allohexaploids that combine the D genome of Aegilops tauschii and the AB genome extracted from the natural hexaploid wheat Triticum aestivum. A comprehensive genome-wide analysis of transcriptional changes using the Affymetrix GeneChip Wheat Genome Array was conducted. Prevalence of gene expression additivity was observed where expression does not deviate from the average of the parents for 99.3% of 34,820 expressed transcripts. Moreover, nearly similar expression was observed (for 99.5% of genes) when comparing these synthetic and natural wheat allohexaploids. Such near-complete additivity has never been reported for other allopolyploids and, more interestingly, for other synthetic wheat allohexaploids that differ from the ones studied here by having the natural tetraploid Triticum turgidum as the AB genome progenitor. Our study gave insights into the dynamics of additive gene expression in the highly stable wheat allohexaploids.


Assuntos
Poliploidia , Triticum/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Instabilidade Genômica
5.
New Phytol ; 187(4): 1181-1194, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20591055

RESUMO

*The present study aims to understand regulation of gene expression in synthetic and natural wheat (Triticum aestivum) allohexaploids, that combines the AB genome of Triticum turgidum and the D genome of Aegilops tauschii; and which we have recently characterized as genetically stable. *We conducted a comprehensive genome-wide analysis of gene expression that allowed characterization of the effect of variability of the D genome progenitor, the intergenerational stability as well as the comparison with natural wheat allohexaploid. We used the Affymetrix GeneChip Wheat Genome Array, on which 55 049 transcripts are represented. *Additive expression was shown to represent the majority of expression regulation in the synthetic allohexaploids, where expression for more than c. 93% of transcripts was equal to the mid-parent value measured from a mixture of parental RNA. This leaves c. 2000 (c. 7%) transcripts, in which expression was nonadditive. No global gene expression bias or dominance towards any of the progenitor genomes was observed whereas high intergenerational stability and low effect of the D genome progenitor variability were revealed. *Our study suggests that gene expression regulation in wheat allohexaploids is established early upon allohexaploidization and highly conserved over generations, as demonstrated by the high similarity of expression with natural wheat allohexaploids.


Assuntos
Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genoma de Planta , Poaceae/genética , Poliploidia , Triticum/genética , Variação Genética , RNA de Plantas
6.
New Phytol ; 186(1): 86-101, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20149116

RESUMO

To understand key mechanisms leading to stabilized allopolyploid species, we characterized the meiotic behaviour of wheat allohexaploids in relation to structural and genetic changes. For that purpose, we analysed first generations of synthetic allohexaploids obtained through interspecific hybridization, followed by spontaneous chromosome doubling, between several genotypes of Triticum turgidum and Aegilops tauschii wheat species, donors of AB and D genomes, respectively. As expected for these Ph1 (Pairing homoeologous 1) gene-carrying allopolyploids, chromosome pairing at metaphase I of meiosis essentially occurs between homologous chromosomes. However, the different synthetic allohexaploids exhibited progenitor-dependent meiotic irregularities, such as incomplete homologous pairing, resulting in univalent formation and leading to aneuploidy in the subsequent generation. Stability of the synthetic allohexaploids was shown to depend on the considered genotypes of both AB and D genome progenitors, where few combinations compare to the natural wheat allohexaploid in terms of regularity of meiosis and euploidy. Aneuploidy represents the only structural change observed in these synthetic allohexaploids, as no apparent DNA sequence elimination or rearrangement was observed when analysing euploid plants with molecular markers, developed from expressed sequence tags (ESTs) as well as simple sequence repeat (SSR) and transposable element sequences.


Assuntos
Aneuploidia , Genoma de Planta/genética , Meiose/genética , Poliploidia , Triticum/citologia , Triticum/genética , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Evolução Molecular , Rearranjo Gênico/genética , Marcadores Genéticos , Hibridização Genética , Metáfase/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA