Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38503499

RESUMO

One-carbon (1C) metabolism is a network of biochemical reactions distributed across organelles that delivers folate-activated 1C units to support macromolecule synthesis, methylation, and reductive homeostasis. Fluxes through these pathways are up-regulated in highly proliferative cancer cells, and anti-folates, which target enzymes within the 1C pathway, have long been used in the treatment of cancer. In this work, we review fundamental aspects of 1C metabolism and place it in context with other biosynthetic and redox pathways, such that 1C metabolism acts to bridge pathways across compartments. We further discuss the importance of stable-isotope-tracing techniques combined with mass spectrometry analysis to study 1C metabolism and conclude by highlighting therapeutic approaches that could exploit cancer cells' dependency on 1C metabolism.

2.
Cancer Discov ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241033

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

3.
Cancer Discov ; : OF1-OF22, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270272

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-driven lung adenocarcinoma (LUAD) underscores the need to better understand alternative mechanisms governing local immunosuppression to fuel novel therapies. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophage (TA-AM) proliferation, which supports tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases proinflammatory immune responses. These results reveal new therapeutic combinations for immunotherapy-resistant EGFR-mutant LUADs and demonstrate how cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth. SIGNIFICANCE: Alternate strategies harnessing anticancer innate immunity are required for lung cancers with poor response rates to T cell-based immunotherapies. This study identifies a targetable, mutually supportive, metabolic relationship between macrophages and transformed epithelium, which is exploited by tumors to obtain metabolic and immunologic support to sustain proliferation and oncogenic signaling.

4.
Nat Commun ; 14(1): 8075, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092754

RESUMO

The metabolic and signaling pathways regulating aggressive mesenchymal colorectal cancer (CRC) initiation and progression through the serrated route are largely unknown. Although relatively well characterized as BRAF mutant cancers, their poor response to current targeted therapy, difficult preneoplastic detection, and challenging endoscopic resection make the identification of their metabolic requirements a priority. Here, we demonstrate that the phosphorylation of SCAP by the atypical PKC (aPKC), PKCλ/ι promotes its degradation and inhibits the processing and activation of SREBP2, the master regulator of cholesterol biosynthesis. We show that the upregulation of SREBP2 and cholesterol by reduced aPKC levels is essential for controlling metaplasia and generating the most aggressive cell subpopulation in serrated tumors in mice and humans. Since these alterations are also detected prior to neoplastic transformation, together with the sensitivity of these tumors to cholesterol metabolism inhibitors, our data indicate that targeting cholesterol biosynthesis is a potential mechanism for serrated chemoprevention.


Assuntos
Proteína Quinase C , Transdução de Sinais , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/genética , Colesterol , Células Epiteliais/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
5.
Biomedicines ; 11(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37893215

RESUMO

Using an untargeted stable isotope-assisted metabolomics approach, we identify erythronate as a metabolite that accumulates in several human cancer cell lines. Erythronate has been reported to be a detoxification product derived from off-target glycolytic metabolism. We use chemical inhibitors and genetic silencing to define the pentose phosphate pathway intermediate erythrose 4-phosphate (E4P) as the starting substrate for erythronate production. However, following enzyme assay-coupled protein fractionation and subsequent proteomics analysis, we identify aldehyde dehydrogenase 1A1 (ALDH1A1) as the predominant contributor to erythrose oxidation to erythronate in cell extracts. Through modulating ALDH1A1 expression in cancer cell lines, we provide additional support. We hence describe a possible alternative route to erythronate production involving the dephosphorylation of E4P to form erythrose, followed by its oxidation by ALDH1A1. Finally, we measure increased erythronate concentrations in tumors relative to adjacent normal tissues from lung cancer patients. These findings suggest the accumulation of erythronate to be an example of metabolic reprogramming in cancer cells, raising the possibility that elevated levels of erythronate may serve as a biomarker of certain types of cancer.

6.
Nat Metab ; 5(9): 1456-1458, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537368
7.
Annu Rev Nutr ; 43: 123-151, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37307855

RESUMO

Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.


Assuntos
Estado Nutricional , Serina , Humanos , Aminoácidos , Glicina , Carbono
8.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131637

RESUMO

The limited efficacy of currently approved immunotherapies in EGFR-mutant lung adenocarcinoma (LUAD) underscores the need to better understand mechanisms governing local immunosuppression. Elevated surfactant and GM-CSF secretion from the transformed epithelium induces tumor-associated alveolar macrophages (TA-AM) to proliferate and support tumor growth by rewiring inflammatory functions and lipid metabolism. TA-AM properties are driven by increased GM-CSF-PPARγ signaling and inhibition of airway GM-CSF or PPARγ in TA-AMs suppresses cholesterol efflux to tumor cells, which impairs EGFR phosphorylation and restrains LUAD progression. In the absence of TA-AM metabolic support, LUAD cells compensate by increasing cholesterol synthesis, and blocking PPARγ in TA-AMs simultaneous with statin therapy further suppresses tumor progression and increases T cell effector functions. These results reveal new therapeutic combinations for immunotherapy resistant EGFR-mutant LUADs and demonstrate how such cancer cells can metabolically co-opt TA-AMs through GM-CSF-PPARγ signaling to provide nutrients that promote oncogenic signaling and growth.

9.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115691

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.


Assuntos
Retinopatia Diabética , Células-Tronco Pluripotentes Induzidas , Telangiectasia Retiniana , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Telangiectasia Retiniana/metabolismo , Telangiectasia Retiniana/patologia , Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Serina/metabolismo
11.
Nature ; 610(7931): 366-372, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198801

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses and spreads by metastasis to the liver1. Cancer-associated fibroblasts, the extracellular matrix and type I collagen (Col I) support2,3 or restrain the progression of PDAC and may impede blood supply and nutrient availability4. The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers to escape nutrient limitation, remain poorly understood. Here we show that matrix-metalloprotease-cleaved Col I (cCol I) and intact Col I (iCol I) exert opposing effects on PDAC bioenergetics, macropinocytosis, tumour growth and metastasis. Whereas cCol I activates discoidin domain receptor 1 (DDR1)-NF-κB-p62-NRF2 signalling to promote the growth of PDAC, iCol I triggers the degradation of DDR1 and restrains the growth of PDAC. Patients whose tumours are enriched for iCol I and express low levels of DDR1 and NRF2 have improved median survival compared to those whose tumours have high levels of cCol I, DDR1 and NRF2. Inhibition of the DDR1-stimulated expression of NF-κB or mitochondrial biogenesis blocks tumorigenesis in wild-type mice, but not in mice that express MMP-resistant Col I. The diverse effects of the tumour stroma on the growth and metastasis of PDAC and on the survival of patients are mediated through the Col I-DDR1-NF-κB-NRF2 mitochondrial biogenesis pathway, and targeting components of this pathway could provide therapeutic opportunities.


Assuntos
Carcinoma Ductal Pancreático , Colágeno Tipo I , Receptor com Domínio Discoidina 1 , Transdução de Sinais , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Metaloproteinases da Matriz/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Taxa de Sobrevida
12.
J Lipid Res ; 63(10): 100281, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36115594

RESUMO

Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.


Assuntos
Neoplasias , Serina C-Palmitoiltransferase , Serina C-Palmitoiltransferase/metabolismo , Ágar/metabolismo , Esfingolipídeos/metabolismo , Serina/química , Ceramidas/metabolismo , Alanina/metabolismo , Membrana Celular/metabolismo , Redes e Vias Metabólicas , Endocitose , Neoplasias/metabolismo
13.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35728000

RESUMO

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Assuntos
Cardiomiopatia Dilatada , Terapia de Alvo Molecular , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Serina , Troponina T , Fator 4 Ativador da Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Glicina/biossíntese , Glicina/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosfoglicerato Desidrogenase/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina/antagonistas & inibidores , Serina/biossíntese , Serina/genética , Troponina T/genética , Troponina T/metabolismo
14.
Nat Metab ; 4(5): 524-533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35655024

RESUMO

Since its discovery in inflammatory macrophages, itaconate has attracted much attention due to its antimicrobial and immunomodulatory activity1-3. However, instead of investigating itaconate itself, most studies used derivatized forms of itaconate and thus the role of non-derivatized itaconate needs to be scrutinized. Mesaconate, a metabolite structurally very close to itaconate, has never been implicated in mammalian cells. Here we show that mesaconate is synthesized in inflammatory macrophages from itaconate. We find that both, non-derivatized itaconate and mesaconate dampen the glycolytic activity to a similar extent, whereas only itaconate is able to repress tricarboxylic acid cycle activity and cellular respiration. In contrast to itaconate, mesaconate does not inhibit succinate dehydrogenase. Despite their distinct impact on metabolism, both metabolites exert similar immunomodulatory effects in pro-inflammatory macrophages, specifically a reduction of interleukin (IL)-6 and IL-12 secretion and an increase of CXCL10 production in a manner that is independent of NRF2 and ATF3. We show that a treatment with neither mesaconate nor itaconate impairs IL-1ß secretion and inflammasome activation. In summary, our results identify mesaconate as an immunomodulatory metabolite in macrophages, which interferes to a lesser extent with cellular metabolism than itaconate.


Assuntos
Macrófagos , Succinatos , Animais , Inflamassomos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Succinatos/metabolismo , Succinatos/farmacologia
15.
Cell Rep ; 39(6): 110792, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545049

RESUMO

Reduced p62 levels are associated with the induction of the cancer-associated fibroblast (CAF) phenotype, which promotes tumorigenesis in vitro and in vivo through inflammation and metabolic reprogramming. However, how p62 is downregulated in the stroma fibroblasts by tumor cells to drive CAF activation is an unresolved central issue in the field. Here we show that tumor-secreted lactate downregulates p62 transcriptionally through a mechanism involving reduction of the NAD+/NADH ratio, which impairs poly(ADP-ribose)-polymerase 1 (PARP-1) activity. PARP-1 inhibition blocks the poly(ADP-ribosyl)ation of the AP-1 transcription factors, c-FOS and c-JUN, which is an obligate step for p62 downregulation. Importantly, restoring p62 levels in CAFs by NAD+ renders CAFs less active. PARP inhibitors, such as olaparib, mimick lactate in the reduction of stromal p62 levels, as well as the subsequent stromal activation both in vitro and in vivo, which suggests that therapies using olaparib would benefit from strategies aimed at inhibiting CAF activity.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Ácido Láctico/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo
16.
Clin Cancer Res ; 28(1): 187-200, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426440

RESUMO

PURPOSE: Gastrointestinal stromal tumor (GIST) is the most common sarcoma of the gastrointestinal tract, with mutant succinate dehydrogenase (SDH) subunits (A-D) comprising less than 7.5% (i.e., 150-200/year) of new cases annually in the United States. Contrary to GISTs harboring KIT or PDGFRA mutations, SDH-mutant GISTs affect adolescents/young adults, often metastasize, and are frequently resistant to tyrosine kinase inhibitors (TKI). Lack of human models for any SDH-mutant tumors, including GIST, has limited molecular characterization and drug discovery. EXPERIMENTAL DESIGN: We describe methods for establishing novel patient-derived SDH-mutant (mSDH) GIST models and interrogated the efficacy of temozolomide on these tumor models in vitro and in clinical trials of patients with mSDH GIST. RESULTS: Molecular and metabolic characterization of our patient-derived mSDH GIST models revealed that these models recapitulate the transcriptional and metabolic hallmarks of parent tumors and SDH deficiency. We further demonstrate that temozolomide elicits DNA damage and apoptosis in our mSDH GIST models. Translating our in vitro discovery to the clinic, a cohort of patients with SDH-mutant GIST treated with temozolomide (n = 5) demonstrated a 40% objective response rate and 100% disease control rate, suggesting that temozolomide represents a promising therapy for this subset of GIST. CONCLUSIONS: We report the first methods to establish patient-derived mSDH tumor models, which can be readily employed for understanding patient-specific tumor biology and treatment strategies. We also demonstrate that temozolomide is effective in patients with mSDH GIST who are refractory to existing chemotherapeutic drugs (namely, TKIs) in clinic for GISTs, bringing a promising treatment option for these patients to clinic.See related commentary by Blakely et al., p. 3.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Adolescente , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Succinato Desidrogenase/metabolismo , Adulto Jovem
17.
iScience ; 24(10): 103149, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34646987

RESUMO

Deconstructing tissue-specific effects of genes and variants on proliferation is critical to understanding cellular transformation and systematically selecting cancer therapeutics. This requires scalable methods for multiplexed genetic screens tracking fitness across time, across lineages, and in a suitable niche, since physiological cues influence functional differences. Towards this, we present an approach, coupling single-cell cancer driver screens in teratomas with hit enrichment by serial teratoma reinjection, to simultaneously screen drivers across multiple lineages in vivo. Using this system, we analyzed population shifts and lineage-specific enrichment for 51 cancer associated genes and variants, profiling over 100,000 cells spanning over 20 lineages, across two rounds of serial reinjection. We confirmed that c-MYC alone or combined with myristoylated AKT1 potently drives proliferation in progenitor neural lineages, demonstrating signatures of malignancy. Additionally, mutant MEK1 S218D/S222D provides a proliferative advantage in mesenchymal lineages like fibroblasts. Our method provides a powerful platform for multi-lineage longitudinal study of oncogenesis.

18.
Cell Rep ; 36(11): 109701, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525352

RESUMO

Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.


Assuntos
Citratos/metabolismo , Nutrientes/metabolismo , Simportadores/metabolismo , Acetilcoenzima A/metabolismo , Adulto , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Edição de Genes , Glutamina/metabolismo , Glutamina/farmacologia , Humanos , Lipogênese , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Neurônios/citologia , Neurônios/metabolismo , Nutrientes/farmacologia , Ratos , Simportadores/deficiência , Simportadores/genética , Zinco/farmacologia
19.
Dev Cell ; 56(11): 1661-1676.e10, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984270

RESUMO

PI5P4Ks are a class of phosphoinositide kinases that phosphorylate PI-5-P to PI-4,5-P2. Distinct localization of phosphoinositides is fundamental for a multitude of cellular functions. Here, we identify a role for peroxisomal PI-4,5-P2 generated by the PI5P4Ks in maintaining energy balance. We demonstrate that PI-4,5-P2 regulates peroxisomal fatty acid oxidation by mediating trafficking of lipid droplets to peroxisomes, which is essential for sustaining mitochondrial metabolism. Using fluorescent-tagged lipids and metabolite tracing, we show that loss of the PI5P4Ks significantly impairs lipid uptake and ß-oxidation in the mitochondria. Further, loss of PI5P4Ks results in dramatic alterations in mitochondrial structural and functional integrity, which under nutrient deprivation is further exacerbated, causing cell death. Notably, inhibition of the PI5P4Ks in cancer cells and mouse tumor models leads to decreased cell viability and tumor growth, respectively. Together, these studies reveal an unexplored role for PI5P4Ks in preserving metabolic homeostasis, which is necessary for tumorigenesis.


Assuntos
Carcinogênese/genética , Mitocôndrias/genética , Neoplasias/metabolismo , Peroxissomos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Linhagem Celular Tumoral , Metabolismo Energético/genética , Feminino , Homeostase/genética , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neoplasias/genética , Neoplasias/patologia , Peroxissomos/genética
20.
Metabolites ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670656

RESUMO

Itaconate is a small molecule metabolite that is endogenously produced by cis-aconitate decarboxylase-1 (ACOD1) in mammalian cells and influences numerous cellular processes. The metabolic consequences of itaconate in cells are diverse and contribute to its regulatory function. Here, we have applied isotope tracing and mass spectrometry approaches to explore how itaconate impacts various metabolic pathways in cultured cells. Itaconate is a competitive and reversible inhibitor of Complex II/succinate dehydrogenase (SDH) that alters tricarboxylic acid (TCA) cycle metabolism leading to succinate accumulation. Upon activation with coenzyme A (CoA), itaconyl-CoA inhibits adenosylcobalamin-mediated methylmalonyl-CoA (MUT) activity and, thus, indirectly impacts branched-chain amino acid (BCAA) metabolism and fatty acid diversity. Itaconate, therefore, alters the balance of CoA species in mitochondria through its impacts on TCA, amino acid, vitamin B12, and CoA metabolism. Our results highlight the diverse metabolic pathways regulated by itaconate and provide a roadmap to link these metabolites to potential downstream biological functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA