Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205773

RESUMO

BACKGROUND: Neuroendocrine neoplasia (NEN) encompasses a diverse group of malignancies marked by histological heterogeneity and highly variable clinical outcomes. Apart from Chromogranin A, specific biomarkers predicting residual tumor disease, tumor burden, and disease progression in NEN are scant. Thus, there is a strong clinical need for new and minimally invasive biomarkers that allow for an evaluation of the prognosis, clinical course, and response to treatment of NEN patients, thereby helping implement individualized treatment decisions in this heterogeneous group of patients. In the current prospective study, we evaluated the role of plasma cell-free DNA concentration and its global hypomethylation and fragmentation as possible diagnostic and prognostic biomarkers in patients with neuroendocrine neoplasias. METHODS: The plasma cfDNA concentration, cfDNA Alu hypomethylation, and LINE-1 cfDNA integrity were evaluated prospectively in 63 NEN patients with presumably cured or advanced metastatic disease. The cfDNA characteristics in NEN patients were compared to the results of a group of 29 healthy controls and correlated with clinical and histopathological data of the patients. RESULTS: Patients with advanced NEN showed a significantly higher cfDNA concentration and percentage of Alu hypomethylation and a reduced LINE-1 cfDNA integrity as compared to the surgically cured NET patients and the healthy control group. The increased hypomethylation and concentration of cfDNA and the reduced cfDNA integrity in NEN patients were strongly associated with tumor burden and poor prognosis, while no correlation with tumor grading, differentiation, localization, or hormonal activity could be found. Multiparametric ROC analysis of plasma cfDNA characteristics was able to distinguish NEN patients with metastatic disease from the control group and the cured NEN patients with AUC values of 0.694 and 0.908, respectively. This was significant even for the group with only a low tumor burden. CONCLUSIONS: The present study, for the first time, demonstrates that the combination of plasma cfDNA concentration, global hypomethylation, and fragment length pattern has the potential to serve as a potent and sensitive prognostic and therapeutic "liquid biopsy" biomarker for tumor burden and disease progression in patients with neuroendocrine neoplasias.

2.
Clin Transl Radiat Oncol ; 7: 1-8, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29594222

RESUMO

BACKGROUND: Overexpression of the insulin-like growth factor-1 receptor (IGF-1R) is associated with increased cell proliferation, differentiation, transformation, and tumorigenicity. Additionally, signaling involved in the resistance of cancer cells to radiotherapy originates from IGF-1R. The purpose of this study was to investigate the role of the IGF-1 system in the radiation response and further evaluate its effect on the expression of DNA repair pathway genes. METHODS: To inhibit the IGF-1 system, we stably transfected the Caco-2 cell line to express a kinase-deficient IGF-1R mutant. We then studied the effects of this mutation on cell growth, the response to radiation, and clonogenic survival, as well as using a cell viability assay to examine DNA damage and repair. Finally, we performed immunofluorescence for γ-H2AX to examine double-strand DNA breaks and evaluated the expression of 84 key genes involved in DNA repair with a real-time PCR array. RESULTS: Mutant IGF-1R cells exhibited significantly blunted cell growth and viability, compared to wild-type cells, as well as reduced clonogenic survival after γ-irradiation. However, mutant IGF-1R cells did not show any significant delays in the repair of radiation-induced DNA double-strand breaks. Furthermore, expression of mutant IGF-1R significantly down-regulated the mRNA levels of BRCA2, a major protein involved in homologous recombination DNA repair. CONCLUSION: These results indicate that blocking the IGF-1R-mediated signaling cascade, through the expression of a kinase-deficient IGF-1R mutant, reduces cell growth and sensitizes cancer cells to ionizing radiation. Therefore, the IGF-1R system could be a potential target to enhance radio-sensitivity and the efficacy of cancer treatments.

3.
PLoS One ; 8(9): e73498, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039964

RESUMO

The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts' immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans' islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy.


Assuntos
Alginatos/química , Bário/química , Materiais Revestidos Biocompatíveis/química , Ilhotas Pancreáticas/citologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células Cultivadas , Células Imobilizadas/citologia , Géis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Camundongos , Ratos , Ratos Wistar
4.
Xenotransplantation ; 20(4): 219-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23789985

RESUMO

Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 µg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 µg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.


Assuntos
Separação Celular/métodos , Compostos Férricos , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Magnetismo , Nanopartículas , Transplante Heterólogo/métodos , Animais , Contagem de Células , Sobrevivência Celular/fisiologia , Dextranos , Heparina , Humanos , Ilhotas Pancreáticas/fisiologia , Imageamento por Ressonância Magnética , Ratos , Ratos Wistar , Siloxanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA