Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(5): 11661-11674, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36098920

RESUMO

The scientific impact of this work is the protection of the environment from hazardous pollutants. Gamma irradiation was employed for the preparation of a new composite polymer by irradiating a mixture containing polyvinyl pyrrolidone (PVP), hydroxyethyl methacrylate (HEMA), and tannic acid (TA) to produce PVP-HEMA-TA. The sorption efficiency and capacity of PVP-HEMA-TA were evaluated by studying some factors affecting the sorption of Nd(III) and Co(II) from aqueous solutions. The results demonstrated that the maximum uptake was 92.4 and 75.3% for Nd(III) and Co(II), respectively. From the kinetic studies, the pseudo-second-order equation could better fit the data than the pseudo-first-order for the sorption of both ions. The sorption isotherm investigations illustrated that the Langmuir equation fits the gained data better than Freundlich equation. The Langmuir capacity was 64.5 and 60.8 mg/g for neodymium and cobalt ions, respectively. The applicability of Langmuir equation is strong evidence that the process is limited by a chemisorption mechanism. Findings of the work highlight the potential utilization of PVP-HEMA-TA as an effective and recyclable material for the elimination of Nd(III) and Co(II) from the aqueous phase.


Assuntos
Polímeros , Poluentes Químicos da Água , Cinética , Metacrilatos , Povidona , Água , Adsorção , Concentração de Íons de Hidrogênio , Soluções
2.
Environ Sci Pollut Res Int ; 29(53): 80716-80726, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729383

RESUMO

The scientific impact of this work is the protection of the environment from hazardous pollutants using a column technique. Besides its higher stability at working pH and its time persisting, Ni-alginate has a higher ability to remove lead ions compared to the other prepared beads (Sr-alginate, Co-alginate, and Ca-alginate). Also, Ni-alginate possessed a higher removal percent, 93.3%, toward Pb2+ than the other ions, taking the sorption order of Pb2+ > Sr2+ > Co2+ > Cd2+ > Zn2+. Therefore, this study focused on using Ni-alginate as a selective sorbent for lead ions. Fixed-bed column was employed for the sorption process. The results for that efficiency are presented as breakthrough curves in view of the impact of various parameters; influent flow rate (1.5, 3.0, and 5.0 mL/min), lead concentration (100, 150, and 200 mg/L), and bed depth of sorbent (3.0, 5.0, and 7.0 cm). Breakthrough modeling including Thomas and Yan models was employed. The outcomes indicated that Thomas theory is more applicable. The overall outcomes indicated that Ni-alginate is recommended for selective removal of Pb2+ from waste solutions.


Assuntos
Chumbo , Poluentes Químicos da Água , Alginatos , Hidrogéis , Cádmio , Adsorção , Íons , Água , Poluentes Químicos da Água/análise , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA