RESUMO
Interactions between biological systems and engineered nanomaterials have become an important area of study due to the application of nanomaterials in medicine. In particular, the application of nanomaterials for cancer diagnosis or treatment presents a challenging opportunity due to the complex biology of this disease spanning multiple time and spatial scales. A system-level analysis would benefit from mathematical modeling and computational simulation to explore the interactions between anticancer drug-loaded nanoparticles (NPs), cells, and tissues, and the associated parameters driving this system and a patient's overall response. Although a number of models have explored these interactions in the past, few have focused on simulating individual cell-NP interactions. This study develops a multicellular agent-based model of cancer nanotherapy that simulates NP internalization, drug release within the cell cytoplasm, "inheritance" of NPs by daughter cells at cell division, cell pharmacodynamic response to the intracellular drug, and overall drug effect on tumor dynamics. A large-scale parallel computational framework is used to investigate the impact of pharmacokinetic design parameters (NP internalization rate, NP decay rate, anticancer drug release rate) and therapeutic strategies (NP doses and injection frequency) on the tumor dynamics. In particular, through the exploration of NP "inheritance" at cell division, the results indicate that cancer treatment may be improved when NPs are inherited at cell division for cytotoxic chemotherapy. Moreover, smaller dosage of cytostatic chemotherapy may also improve inhibition of tumor growth when cell division is not completely inhibited. This work suggests that slow delivery by "heritable" NPs can drive new dimensions of nanotherapy design for more sustained therapeutic response.
RESUMO
Mechanistic learning refers to the synergistic combination of mechanistic mathematical modeling and data-driven machine or deep learning. This emerging field finds increasing applications in (mathematical) oncology. This review aims to capture the current state of the field and provides a perspective on how mechanistic learning may progress in the oncology domain. We highlight the synergistic potential of mechanistic learning and point out similarities and differences between purely data-driven and mechanistic approaches concerning model complexity, data requirements, outputs generated, and interpretability of the algorithms and their results. Four categories of mechanistic learning (sequential, parallel, extrinsic, intrinsic) of mechanistic learning are presented with specific examples. We discuss a range of techniques including physics-informed neural networks, surrogate model learning, and digital twins. Example applications address complex problems predominantly from the domain of oncology research such as longitudinal tumor response predictions or time-to-event modeling. As the field of mechanistic learning advances, we aim for this review and proposed categorization framework to foster additional collaboration between the data- and knowledge-driven modeling fields. Further collaboration will help address difficult issues in oncology such as limited data availability, requirements of model transparency, and complex input data which are embraced in a mechanistic learning framework.
Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Modelos Teóricos , OncologiaRESUMO
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
RESUMO
Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.
RESUMO
Hypoxia is a critical factor in solid tumors that has been associated with cancer progression and aggressiveness. We recently developed a hypoxia fate mapping system to trace post-hypoxic cells within a tumor for the first time. This approach uses an oxygen-dependent fluorescent switch and allowed us to measure key biological features such as oxygen distribution, cell proliferation, and migration. We developed a computational model to investigate the motility and phenotypic persistence of hypoxic and post-hypoxic cells during tumor progression. The cellular behavior was defined by phenotypic persistence time, cell movement bias, and the fraction of cells that respond to an enhanced migratory stimulus. This work combined advanced cell tracking and imaging techniques with mathematical modeling, to reveal that a persistent invasive migratory phenotype that develops under hypoxia is required for cellular escape into the surrounding tissue, promoting the formation of invasive structures ("plumes") that expand toward the oxygenated tumor regions.
RESUMO
Cancer biology involves complex, dynamic interactions between cancer cells and their tissue microenvironments. Single-cell effects are critical drivers of clinical progression. Chemical and mechanical communication between tumor and stromal cells can co-opt normal physiologic processes to promote growth and invasion. Cancer cell heterogeneity increases cancer's ability to test strategies to adapt to microenvironmental stresses. Hypoxia and treatment can select for cancer stem cells and drive invasion and resistance. Cell-based computational models (also known as discrete models, agent-based models, or individual-based models) simulate individual cells as they interact in virtual tissues, which allows us to explore how single-cell behaviors lead to the dynamics we observe and work to control in cancer systems. In this review, we introduce the broad range of techniques available for cell-based computational modeling. The approaches can range from highly detailed models of just a few cells and their morphologies to millions of simpler cells in three-dimensional tissues. Modeling individual cells allows us to directly translate biologic observations into simulation rules. In many cases, individual cell agents include molecular-scale models. Most models also simulate the transport of oxygen, drugs, and growth factors, which allow us to link cancer development to microenvironmental conditions. We illustrate these methods with examples drawn from cancer hypoxia, angiogenesis, invasion, stem cells, and immunosurveillance. An ecosystem of interoperable cell-based simulation tools is emerging at a time when cloud computing resources make software easier to access and supercomputing resources make large-scale simulation studies possible. As the field develops, we anticipate that high-throughput simulation studies will allow us to rapidly explore the space of biologic possibilities, prescreen new therapeutic strategies, and even re-engineer tumor and stromal cells to bring cancer systems under control.