Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 65(4): 430-441, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038697

RESUMO

Molecular patterns and pathways in idiopathic pulmonary fibrosis (IPF) have been extensively investigated, but few studies have assimilated multiomic platforms to provide an integrative understanding of molecular patterns that are relevant in IPF. Herein, we combine the coding and noncoding transcriptomes, DNA methylomes, and proteomes from IPF and healthy lung tissue to identify molecules and pathways associated with this disease. RNA sequencing, Illumina MethylationEPIC array, and liquid chromatography-mass spectrometry proteomic data were collected on lung tissue from 24 subjects with IPF and 14 control subjects. Significant differential features were identified by using linear models adjusting for age and sex, inflation, and bias when appropriate. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies was used for integrative multiomic analysis. We identified 4,643 differentially expressed transcripts aligning to 3,439 genes, 998 differentially abundant proteins, 2,500 differentially methylated regions, and 1,269 differentially expressed long noncoding RNAs (lncRNAs) that were significant after correcting for multiple tests (false discovery rate < 0.05). Unsupervised hierarchical clustering using 20 coding mRNA, protein, methylation, and lncRNA features with the highest loadings on the top latent variable from the four data sets demonstrates perfect separation of IPF and control lungs. Our analysis confirmed previously validated molecules and pathways known to be dysregulated in disease and implicated novel molecular features as potential drivers and modifiers of disease. For example, 4 proteins, 18 differentially methylated regions, and 10 lncRNAs were found to have strong correlations (|r| > 0.8) with MMP7 (matrix metalloproteinase 7). Therefore, by using a system biology approach, we have identified novel molecular relationships in IPF.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , RNA Longo não Codificante/genética , Transcriptoma/fisiologia , Idoso , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Metaloproteinase 7 da Matriz/metabolismo , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo
2.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924260

RESUMO

The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-ß signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.


Assuntos
Irradiação Craniana , Hipocampo/metabolismo , Hipocampo/efeitos da radiação , Metaboloma , Neurogênese/genética , Neurogênese/efeitos da radiação , Proteoma , Transcriptoma , Animais , Biologia Computacional/métodos , Irradiação Craniana/efeitos adversos , Feminino , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Doses de Radiação , Transdução de Sinais
3.
Int J Radiat Biol ; 96(5): 642-650, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31914348

RESUMO

Purpose: Pulmonary inflammation is an adverse consequence of radiation therapy in breast cancer. The aim of this study was to elucidate biological pathways leading to this pathology.Materials and methods: Lung endothelial cells were isolated 24 h after thorax-irradiation (sham or 10 Gy X-ray) from female C57Bl/6 mice and cultivated for 6 days.Results: Quantitative proteomic analysis of lung endothelial cells was done using data independent acquisition (DIA) mass spectrometry. The data were analyzed using Ingenuity Pathway Analysis and STRINGdb. In total, 4220 proteins were identified using DIA of which 60 were dysregulated in the irradiated samples (fold change ≥2.00 or ≤0.50; q-value <0.05). Several (12/40) upregulated proteins formed a cluster of inflammatory proteins with STAT1 and IRF3 as predicted upstream regulators. The several-fold increased expression of STAT1 and STAT-associated ISG15 was confirmed by immunoblotting. The expression of antioxidant proteins SOD1 and PRXD5 was downregulated suggesting radiation-induced oxidative stress. Similarly, the phosphorylated (active) forms of STING and IRF3, both members of the cGAS/STING pathway, were downregulated.Conclusions: These data suggest the involvement of JAK/STAT and cGas/STING pathways in the genesis of radiation-induced lung inflammation. These pathways may be used as novel targets for the prevention of radiation-induced lung damage.


Assuntos
Células Endoteliais/efeitos da radiação , Inflamação/etiologia , Pulmão/efeitos da radiação , Espectrometria de Massas/métodos , Fator de Transcrição STAT1/fisiologia , Animais , Feminino , Fator Regulador 3 de Interferon/fisiologia , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Transdução de Sinais
4.
Anal Biochem ; 584: 113390, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401005

RESUMO

Extracellular vesicles (EVs) are cell-derived membrane-bound organelles that have generated interest as they reflect the physiological condition of their source. Mass spectrometric (MS) analyses of protein cargo of EVs may lead to the discovery of biomarkers for diseases. However, for a comprehensive MS-based proteomics analysis, an optimal lysis of the EVs is required. Six methods for the protein extraction from EVs secreted by the head and neck cell line BHY were compared. Commercial radioimmunoprecipitation assay (RIPA) buffer outperformed the other buffers investigated in this study (Tris-SDS, Tris-Triton, GuHCl, urea-thiourea, and commercial Cell-lysis buffer). Following lysis with RIPA buffer, 310 proteins and 1469 peptides were identified using LTQ OrbitrapXL mass spectrometer. Among these, 86% of proteins and 72% of peptides were identified in all three replicates. In the case of other buffers, Tris-Triton identified on average 277 proteins, Cell-lysis buffer 257 proteins, and Tris-SDS, GuHCl and urea-thiourea each 267 proteins. In total, 399 proteins including 74 of the top EV markers (Exocarta) were identified, the most of the latter (73) using RIPA. The proteins exclusively identified using RIPA represented all Gene Ontology cell compartments. This study suggests that RIPA is an optimal lysis buffer for EVs in combination with MS.


Assuntos
Fracionamento Químico/métodos , Vesículas Extracelulares/metabolismo , Espectrometria de Massas , Proteoma/isolamento & purificação , Proteoma/metabolismo , Proteômica , Soluções Tampão , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA