Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Reprogram ; 26(1): 24-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38381405

RESUMO

Aging is a complex progression of changes best characterized as the chronic dysregulation of cellular processes leading to deteriorated tissue and organ function. Although aging cannot currently be prevented, its impact on life- and healthspan in the elderly can potentially be minimized by interventions that aim to return these cellular processes to optimal function. Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; OCT4, SOX2, and KLF4; OSK) can reverse age-related changes in vitro and in vivo. However, it is still unknown whether the Yamanaka factors (or a subset) are capable of extending the lifespan of aged wild-type (WT) mice. In this study, we show that systemically delivered adeno-associated viruses, encoding an inducible OSK system, in 124-week-old male mice extend the median remaining lifespan by 109% over WT controls and enhance several health parameters. Importantly, we observed a significant improvement in frailty scores indicating that we were able to improve the healthspan along with increasing the lifespan. Furthermore, in human keratinocytes expressing exogenous OSK, we observed significant epigenetic markers of age reversal, suggesting a potential reregulation of genetic networks to a younger potentially healthier state. Together, these results may have important implications for the development of partial reprogramming interventions to reverse age-associated diseases in the elderly.


Assuntos
Envelhecimento , Longevidade , Idoso , Masculino , Humanos , Animais , Camundongos , Longevidade/genética , Envelhecimento/genética , Terapia Genética , Queratinócitos , Reprogramação Celular
2.
Biochemistry ; 48(48): 11559-71, 2009 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-19883124

RESUMO

Escherichia coli LpxB, an inverting glycosyl transferase of the GT-B superfamily and a member of CAZy database family 19, catalyzes the fifth step of lipid A biosynthesis: UDP-2,3-diacylglucosamine + 2,3-diacylglucosamine 1-phosphate --> 2',3'-diacylglucosamine-(beta,1'-6)-2,3-diacylglucosamine 1-phosphate + UDP. LpxB is a target for the development of new antibiotics, but no member of family 19, which consists entirely of LpxB orthologues, has been characterized mechanistically or structurally. Here, we have purified E. coli and Haemophilus influenzae LpxB to near homogeneity on a 10-100 mg scale using protease-cleavable His(10)-tagged constructs. E. coli LpxB activity is dependent upon the bulk surface concentration of its substrates in a mixed micelle assay system, suggesting that catalysis occurs at the membrane interface. E. coli LpxB (M(r) approximately 43 kDa) sediments with membranes at low salt concentrations but is largely solubilized with buffers of high ionic strength. It purifies with 1.6-3.5 mol of phospholipid/mol of LpxB polypeptide. Transmission electron microscopy reveals the accumulation of aberrant intracellular membranes when LpxB is overexpressed. Mutagenesis of LpxB identified two conserved residues, D89A and R201A, for which no residual catalytic activity was detected. Our results provide a rational starting point for structural studies.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Haemophilus influenzae/enzimologia , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Catálise , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/isolamento & purificação , Concentração Osmolar , Peptídeo Hidrolases/metabolismo , Sais/química
3.
Chem Biol Interact ; 143-144: 481-91, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604234

RESUMO

17-beta-Hydroxysteroid dehydrogenase type 1 (17betaHSD1), also called estradiol dehydrogenase, catalyzes the NADPH-dependent reduction of the weak estrogen, estrone, into the more potent estrogen, 17-beta-estradiol. 17betaHSD1 is an attractive drug target in hormone-sensitive breast cancer. Past efforts to develop selective inhibitors of 17betaHSD1 have focused on design of substrate analogs. It is challenging to develop steroid analogs that are devoid of any undesired biological activity. 17betaHSD1 is a member of the short-chain dehydrogenase/reductase (SDR) superfamily that includes many hydroxysteroid dehydrogenases. Members of the SDR family bind NAD(P)(H) in a motif that is a modified Rossmann fold. We demonstrated previously that the Rossmann folds of classical dehydrogenases can be selectively inhibited by derivatives and analogs of the natural product gossypol. In this study, we have addressed the question whether the modified Rossmann fold in 17betaHSD1 is a target for identification of lead compounds for structure-based drug design. 17betaHSD1 was purified from human placenta. 17betaHSD1 is inhibited by derivatives of gossypol with dissociation constants as low as 2 microM. Inhibition is competitive with the binding of cofactor. Molecular modeling studies using the published coordinates of human 17betaHSD1 suggest that these inhibitors occupy the modified Rossmann fold at the nicotinamide end of the dinucleotide-binding site, extending towards the substrate site. A computational approach was used to design potential new inhibitors of 17betaHSD1. The results suggest not only that derivatives of gossypol represent attractive lead compounds for structure-based drug design but also suggest that appropriate incorporation of a substrate analog into the design of these Rossmann fold inhibitors may provide pan-active site inhibitors that span the cofactor and substrate site, potentially offering specificity and increased potency.


Assuntos
17-Hidroxiesteroide Desidrogenases/metabolismo , Inibidores Enzimáticos/farmacologia , 17-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 17-Hidroxiesteroide Desidrogenases/química , Sítios de Ligação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA