Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 27(Pt 1): 185-198, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868751

RESUMO

Friedreich's ataxia (FRDA) is a neurodegenerative disease characterized by an increase in intracytoplasmic iron concentration. Here the nanoscale iron distribution within single fibroblasts from FRDA patients was investigated using synchrotron-radiation-based nanoscopic X-ray fluorescence and X-ray in-line holography at the ID16A nano-imaging beamline of the ESRF. This unique probe was deployed to uncover the iron cellular two-dimensional architecture of freeze-dried FRDA fibroblasts. An unsurpassed absolute detection capability of 180 iron atoms within a 30 nm × 50 nm nanoscopic X-ray beam footprint was obtained using state-of-the-art X-ray focusing optics and a large-solid-angle detection system. Various micrometre-sized iron-rich organelles could be revealed for the first time, tentatively identified as endoplasmic reticulum, mitochondria and lysosomes. Also a multitude of nanoscopic iron hot-spots were observed in the cytosol, interpreted as chaperoned iron within the fibroblast's labile iron pool. These observations enable new hypotheses on the storage and trafficking of iron in the cell and ultimately to a better understanding of iron-storage diseases such as Friedreich's ataxia.


Assuntos
Fibroblastos/química , Ataxia de Friedreich/patologia , Holografia/métodos , Ferro/análise , Análise de Célula Única/métodos , Espectrometria por Raios X/métodos , Carbono , Citoplasma/química , Fibroblastos/ultraestrutura , Liofilização , Humanos , Nanoestruturas , Organelas/química , Organelas/ultraestrutura , Análise de Célula Única/instrumentação , Síncrotrons , Fixação de Tecidos/métodos
2.
J Med Chem ; 61(22): 10126-10140, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30354101

RESUMO

Ferroptosis is an iron-catalyzed, nonapoptotic form of regulated necrosis that results in oxidative lipid damage in cell membranes that can be inhibited by the radical-trapping antioxidant Ferrostatin-1 (Fer-1). Novel inhibitors derived from the Fer-1 scaffold inhibited ferroptosis potently but suffered from solubility issues. In this paper, we report the synthesis of a more stable and readily soluble series of Fer-1 analogues that potently inhibit ferroptosis. The most promising compounds (37, 38, and 39) showed an improved protection compared to Fer-1 against multiorgan injury in mice. No toxicity was observed in mice after daily injection of 39 (UAMC-3203) for 4 weeks. UAMC-3203 inserts rapidly in a phospholipid bilayer in silico, which aligns with the current understanding of the mechanism of action of these compounds. In conclusion, these analogues have superior properties compared to Fer-1, show in vivo efficacy, and represent novel lead compounds with therapeutic potential in relevant ferroptosis-driven disease models.


Assuntos
Apoptose/efeitos dos fármacos , Cicloexilaminas/metabolismo , Desenho de Fármacos , Fenilenodiaminas/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Camundongos , Modelos Moleculares , Conformação Molecular , Estresse Oxidativo/efeitos dos fármacos , Ratos , Distribuição Tecidual
3.
J Clin Invest ; 128(8): 3341-3355, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939160

RESUMO

High-risk neuroblastoma is a devastating malignancy with very limited therapeutic options. Here, we identify withaferin A (WA) as a natural ferroptosis-inducing agent in neuroblastoma, which acts through a novel double-edged mechanism. WA dose-dependently either activates the nuclear factor-like 2 pathway through targeting of Kelch-like ECH-associated protein 1 (noncanonical ferroptosis induction) or inactivates glutathione peroxidase 4 (canonical ferroptosis induction). Noncanonical ferroptosis induction is characterized by an increase in intracellular labile Fe(II) upon excessive activation of heme oxygenase-1, which is sufficient to induce ferroptosis. This double-edged mechanism might explain the superior efficacy of WA as compared with etoposide or cisplatin in killing a heterogeneous panel of high-risk neuroblastoma cells, and in suppressing the growth and relapse rate of neuroblastoma xenografts. Nano-targeting of WA allows systemic application and suppressed tumor growth due to an enhanced accumulation at the tumor site. Collectively, our data propose a novel therapeutic strategy to efficiently kill cancer cells by ferroptosis.


Assuntos
Apoptose/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Vitanolídeos/farmacologia , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Heme Oxigenase-1/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA