Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2408889121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39167600

RESUMO

WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.


Assuntos
Neoplasias Hematológicas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Camundongos , Linhagem Celular Tumoral , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico
2.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895402

RESUMO

While mitotic spindle inhibitors specifically kill proliferating tumor cells without the toxicities of microtubule poisons, resistance has limited their clinical utility. Treating glioblastomas with the spindle inhibitors ispinesib, alisertib, or volasertib creates a subpopulation of therapy induced senescent cells that resist these drugs by relying upon the anti-apoptotic and metabolic effects of activated STAT3. Furthermore, these senescent cells expand the repertoire of cells resistant to these drugs by secreting an array of factors, including TGFß, which induce proliferating cells to exit mitosis and become quiescent-a state that also resists spindle inhibitors. Targeting STAT3 restores sensitivity to each of these drugs by depleting the senescent subpopulation and inducing quiescent cells to enter the mitotic cycle. These results support a therapeutic strategy of targeting STAT3-dependent therapy-induced senescence to enhance the efficacy of spindle inhibitors for the treatment of glioblastoma. Highlights: • Resistance to non-microtubule spindle inhibitors limits their efficacy in glioblastoma and depends on STAT3.• Resistance goes hand in hand with development of therapy induced senescence (TIS).• Spindle inhibitor resistant glioblastomas consist of three cell subpopulations-proliferative, quiescent, and TIS-with proliferative cells sensitive and quiescent and TIS cells resistant.• TIS cells secrete TGFß, which induces proliferative cells to become quiescent, thereby expanding the population of resistant cells in a spindle inhibitor resistant glioblastoma• Treatment with a STAT3 inhibitor kills TIS cells and restores sensitivity to spindle inhibitors.

3.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746089

RESUMO

We have identified a NMIIA and IIB-specific small molecule inhibitor, MT-125, and have studied its effects in GBM. MT-125 has high brain penetrance and retention and an excellent safety profile; blocks GBM invasion and cytokinesis, consistent with the known roles of NMII; and prolongs survival as a single agent in murine GBM models. MT-125 increases signaling along both the PDGFR- and MAPK-driven pathways through a mechanism that involves the upregulation of reactive oxygen species, and it synergizes with FDA-approved PDGFR and mTOR inhibitors in vitro . Combining MT-125 with sunitinib, a PDGFR inhibitor, or paxalisib, a combined PI3 Kinase/mTOR inhibitor significantly improves survival in orthotopic GBM models over either drug alone, and in the case of sunitinib, markedly prolongs survival in ∼40% of mice. Our results provide a powerful rationale for developing NMII targeting strategies to treat cancer and demonstrate that MT-125 has strong clinical potential for the treatment of GBM. Highlights: MT-125 is a highly specific small molecule inhibitor of non-muscle myosin IIA and IIB, is well-tolerated, and achieves therapeutic concentrations in the brain with systemic dosing.Treating preclinical models of glioblastoma with MT-125 produces durable improvements in survival.MT-125 stimulates PDGFR- and MAPK-driven signaling in glioblastoma and increases dependency on these pathways.Combining MT-125 with an FDA-approved PDGFR inhibitor in a mouse GBM model synergizes to improve median survival over either drug alone, and produces tumor free, prolonged survival in over 40% of mice.

5.
Front Immunol ; 13: 936129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059502

RESUMO

With the clinical approval of T-cell-dependent immune checkpoint inhibitors for many cancers, therapeutic cancer vaccines have re-emerged as a promising immunotherapy. Cancer vaccines require the addition of immunostimulatory adjuvants to increase vaccine immunogenicity, and increasingly multiple adjuvants are used in combination to bolster further and shape cellular immunity to tumor antigens. However, rigorous quantification of adjuvants' synergistic interactions is challenging due to partial redundancy in costimulatory molecules and cytokine production, leading to the common assumption that combining both adjuvants at the maximum tolerated dose results in optimal efficacy. Herein, we examine this maximum dose assumption and find combinations of these doses are suboptimal. Instead, we optimized dendritic cell activation by extending the Multidimensional Synergy of Combinations (MuSyC) framework that measures the synergy of efficacy and potency between two vaccine adjuvants. Initially, we performed a preliminary in vitro screening of clinically translatable adjuvant receptor targets (TLR, STING, NLL, and RIG-I). We determined that STING agonist (CDN) plus TLR4 agonist (MPL-A) or TLR7/8 agonist (R848) as the best pairwise combinations for dendritic cell activation. In addition, we found that the combination of R848 and CDN is synergistically efficacious and potent in activating both murine and human antigen-presenting cells (APCs) in vitro. These two selected adjuvants were then used to estimate a MuSyC-dose optimized for in vivo T-cell priming using ovalbumin-based peptide vaccines. Finally, using B16 melanoma and MOC1 head and neck cancer models, MuSyC-dose-based adjuvating of cancer vaccines improved the antitumor response, increased tumor-infiltrating lymphocytes, and induced novel myeloid tumor infiltration changes. Further, the MuSyC-dose-based adjuvants approach did not cause additional weight changes or increased plasma cytokine levels compared to CDN alone. Collectively, our findings offer a proof of principle that our MuSyC-extended approach can be used to optimize cancer vaccine formulations for immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Animais , Vacinas Anticâncer/uso terapêutico , Citocinas , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Eficácia de Vacinas
6.
Leukemia ; 36(10): 2396-2407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35999260

RESUMO

Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in 25 % of acute myeloid leukemia (AML) patients, drive leukemia progression and confer a poor prognosis. Primary resistance to FLT3 kinase inhibitors (FLT3i) quizartinib, crenolanib and gilteritinib is a frequent clinical challenge and occurs in the absence of identifiable genetic causes. This suggests that adaptive cellular mechanisms mediate primary resistance to on-target FLT3i therapy. Here, we systematically investigated acute cellular responses to on-target therapy with multiple FLT3i in FLT3-ITD + AML using recently developed functional translatome proteomics (measuring changes in the nascent proteome) with phosphoproteomics. This pinpointed AKT-mTORC1-ULK1-dependent autophagy as a dominant resistance mechanism to on-target FLT3i therapy. FLT3i induced autophagy in a concentration- and time-dependent manner specifically in FLT3-ITD + cells in vitro and in primary human AML cells ex vivo. Pharmacological or genetic inhibition of autophagy increased the sensitivity to FLT3-targeted therapy in cell lines, patient-derived xenografts and primary AML cells ex vivo. In mice xenografted with FLT3-ITD + AML cells, co-treatment with oral FLT3 and autophagy inhibitors synergistically impaired leukemia progression and extended overall survival. Our findings identify a molecular mechanism responsible for primary FLT3i treatment resistance and demonstrate the pre-clinical efficacy of a rational combination treatment strategy targeting both FLT3 and autophagy induction.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Animais , Autofagia , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteoma , Proteínas Proto-Oncogênicas c-akt , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
7.
Cell Rep ; 39(12): 110991, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35732128

RESUMO

Inhibitors of the mitotic kinesin Kif11 are anti-mitotics that, unlike vinca alkaloids or taxanes, do not disrupt microtubules and are not neurotoxic. However, development of resistance has limited their clinical utility. While resistance to Kif11 inhibitors in other cell types is due to mechanisms that prevent these drugs from disrupting mitosis, we find that in glioblastoma (GBM), resistance to the Kif11 inhibitor ispinesib works instead through suppression of apoptosis driven by activation of STAT3. This form of resistance requires dual phosphorylation of STAT3 residues Y705 and S727, mediated by SRC and epidermal growth factor receptor (EGFR), respectively. Simultaneously inhibiting SRC and EGFR reverses this resistance, and combined targeting of these two kinases in vivo with clinically available inhibitors is synergistic and significantly prolongs survival in ispinesib-treated GBM-bearing mice. We thus identify a translationally actionable approach to overcoming Kif11 inhibitor resistance that may work to block STAT3-driven resistance against other anti-cancer therapies as well.


Assuntos
Antimitóticos , Glioblastoma , Animais , Antimitóticos/farmacologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Cinesinas , Camundongos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
Cell Mol Gastroenterol Hepatol ; 8(4): 579-594, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31310834

RESUMO

BACKGROUND & AIMS: Activating mutation of the KRAS gene is common in some cancers, such as pancreatic cancer, but rare in other cancers. Chronic pancreatitis is a predisposing condition for pancreatic ductal adenocarcinoma (PDAC), but how it synergizes with KRAS mutation is not known. METHODS: We used a mouse model to express an activating mutation of Kras in conjunction with obstruction of the main pancreatic duct to recapitulate a common etiology of human chronic pancreatitis. Because the cell of origin of PDAC is not clear, Kras mutation was introduced into either duct cells or acinar cells. RESULTS: Although KrasG12D expression in both cell types was protective against damage-associated cell death, chronic pancreatitis induced p53, p21, and growth arrest only in acinar-derived cells. Mutant duct cells did not elevate p53 or p21 expression and exhibited increased proliferation driving the appearance of PDAC over time. CONCLUSIONS: One mechanism by which tissues may be susceptible or resistant to KRASG12D-initiated tumorigenesis is whether they undergo a p53-mediated damage response. In summary, we have uncovered a mechanism by which inflammation and intrinsic cellular programming synergize for the development of PDAC.


Assuntos
Pancreatite Crônica/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animais , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica , Modelos Animais de Doenças , Genes ras , Metaplasia , Camundongos , Mutação , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/genética , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Neoplasias Pancreáticas
9.
Cell Syst ; 8(2): 97-108.e16, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30797775

RESUMO

Two goals motivate treating diseases with drug combinations: reduce off-target toxicity by minimizing doses (synergistic potency) and improve outcomes by escalating effect (synergistic efficacy). Established drug synergy frameworks obscure such distinction, failing to harness the potential of modern chemical libraries. We therefore developed multi-dimensional synergy of combinations (MuSyC), a formalism based on a generalized, multi-dimensional Hill equation, which decouples synergistic potency and efficacy. In mutant-EGFR-driven lung cancer, MuSyC reveals that combining a mutant-EGFR inhibitor with inhibitors of other kinases may result only in synergistic potency, whereas synergistic efficacy can be achieved by co-targeting mutant-EGFR and epigenetic regulation or microtubule polymerization. In mutant-BRAF melanoma, MuSyC determines whether a molecular correlate of BRAFi insensitivity alters a BRAF inhibitor's potency, efficacy, or both. These findings showcase MuSyC's potential to transform the enterprise of drug-combination screens by precisely guiding translation of combinations toward dose reduction, improved efficacy, or both.


Assuntos
Combinação de Medicamentos , Sinergismo Farmacológico , Melanoma/tratamento farmacológico , Humanos
10.
Sci Rep ; 7: 42604, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28205616

RESUMO

Dysregulated metabolism can broadly affect therapy resistance by influencing compensatory signaling and expanding proliferation. Given many BRAF-mutated melanoma patients experience disease progression with targeted BRAF inhibitors, we hypothesized therapeutic response is related to tumor metabolic phenotype, and that altering tumor metabolism could change therapeutic outcome. We demonstrated the proliferative kinetics of BRAF-mutated melanoma cells treated with the BRAF inhibitor PLX4720 fall along a spectrum of sensitivity, providing a model system to study the interplay of metabolism and drug sensitivity. We discovered an inverse relationship between glucose availability and sensitivity to BRAF inhibition through characterization of metabolic phenotypes using nearly a dozen metabolic parameters in Principle Component Analysis. Subsequently, we generated rho0 variants that lacked functional mitochondrial respiration and increased glycolytic metabolism. The rho0 cell lines exhibited increased sensitivity to PLX4720 compared to the respiration-competent parental lines. Finally, we utilized the FDA-approved antiretroviral drug zalcitabine to suppress mitochondrial respiration and to force glycolysis in our cell line panel, resulting in increased PLX4720 sensitivity via shifts in EC50 and Hill slope metrics. Our data suggest that forcing tumor glycolysis in melanoma using zalcitabine or other similar approaches may be an adjunct to increase the efficacy of targeted BRAF therapy.


Assuntos
Antineoplásicos/farmacologia , Melanoma/genética , Melanoma/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glucose/metabolismo , Glicólise , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular , Oncogenes , Variantes Farmacogenômicos , Fenótipo , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA