Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391909

RESUMO

Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Estresse Oxidativo/genética , Antioxidantes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
2.
Brain Behav Immun ; 116: 269-285, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142915

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Microglia/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Traumatismos da Medula Espinal/metabolismo
3.
Biology (Basel) ; 12(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37372129

RESUMO

Clinical and animal model studies have implicated inflammation and glial and peripheral immune cell responses in the pathophysiology of spinal cord injury (SCI). A key player in the inflammatory response after SCI is the pleiotropic cytokine tumor necrosis factor (TNF), which exists both in both a transmembrane (tmTNF) and a soluble (solTNF) form. In the present study, we extend our previous findings of a therapeutic effect of topically blocking solTNF signaling after SCI for three consecutive days on lesion size and functional outcome to study the effect on spatio-temporal changes in the inflammatory response after SCI in mice treated with the selective solTNF inhibitor XPro1595 and compared to saline-treated mice. We found that despite comparable TNF and TNF receptor levels between XPro1595- and saline-treated mice, XPro1595 transiently decreased pro-inflammatory interleukin (IL)-1ß and IL-6 levels and increased pro-regenerative IL-10 levels in the acute phase after SCI. This was complemented by a decrease in the number of infiltrated leukocytes (macrophages and neutrophils) in the lesioned area of the spinal cord and an increase in the number of microglia in the peri-lesion area 14 days after SCI, followed by a decrease in microglial activation in the peri-lesion area 21 days after SCI. This translated into increased myelin preservation and improved functional outcomes in XPro1595-treated mice 35 days after SCI. Collectively, our data suggest that selective targeting of solTNF time-dependently modulates the neuroinflammatory response by favoring a pro-regenerative environment in the lesioned spinal cord, leading to improved functional outcomes.

4.
Mol Neurodegener ; 18(1): 5, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653804

RESUMO

BACKGROUND: Astrocytes play a crucial, yet not fully elucidated role in the selective motor neuron pathology in amyotrophic lateral sclerosis (ALS). Among other responsibilities, astrocytes provide important neuronal homeostatic support, however this function is highly compromised in ALS. The establishment of fully human coculture systems can be used to further study the underlying mechanisms of the dysfunctional intercellular interplay, and has the potential to provide a platform for revealing novel therapeutic entry points. METHODS: In this study, we characterised human induced pluripotent stem cell (hiPSC)-derived astrocytes from FUS-ALS patients, and incorporated these cells into a human motor unit microfluidics model to investigate the astrocytic effect on hiPSC-derived motor neuron network and functional neuromuscular junctions (NMJs) using immunocytochemistry and live-cell recordings. FUS-ALS cocultures were systematically compared to their CRISPR-Cas9 gene-edited isogenic control systems. RESULTS: We observed a dysregulation of astrocyte homeostasis, which resulted in a FUS-ALS-mediated increase in reactivity and secretion of inflammatory cytokines. Upon coculture with motor neurons and myotubes, we detected a cytotoxic effect on motor neuron-neurite outgrowth, NMJ formation and functionality, which was improved or fully rescued by isogenic control astrocytes. We demonstrate that ALS astrocytes have both a gain-of-toxicity and loss-of-support function involving the WNT/ß-catenin pathway, ultimately contributing to the disruption of motor neuron homeostasis, intercellular networks and NMJs. CONCLUSIONS: Our findings shine light on a complex, yet highly important role of astrocytes in ALS, and provides further insight in to their pathological mechanisms.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular , Proteína FUS de Ligação a RNA/fisiologia
5.
Stem Cell Reports ; 16(6): 1510-1526, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048689

RESUMO

PARK2 (parkin) mutations cause early-onset Parkinson's disease (PD). Parkin is an ubiquitin E3 ligase that participates in several cellular functions, including mitochondrial homeostasis. However, the specific metabolomic changes caused by parkin depletion remain unknown. Here, we used isogenic human induced pluripotent stem cells (iPSCs) with and without PARK2 knockout (KO) to investigate the effect of parkin loss of function by comparative metabolomics supplemented with ultrastructural and functional analyses. PARK2 KO neurons displayed increased tricarboxylic acid (TCA) cycle activity, perturbed mitochondrial ultrastructure, ATP depletion, and dysregulation of glycolysis and carnitine metabolism. These perturbations were combined with increased oxidative stress and a decreased anti-oxidative response. Key findings for PARK2 KO cells were confirmed using patient-specific iPSC-derived neurons. Overall, our data describe a unique metabolomic profile associated with parkin dysfunction and show that combining metabolomics with an iPSC-derived dopaminergic neuronal model of PD is a valuable approach to obtain novel insight into the disease pathogenesis.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Metabolismo Energético , Células-Tronco Pluripotentes Induzidas/metabolismo , Metaboloma , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico , Técnicas de Inativação de Genes/métodos , Glicólise , Humanos , Redes e Vias Metabólicas , Mitocôndrias/ultraestrutura , Mutação , Estresse Oxidativo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética
6.
PLoS One ; 16(4): e0248800, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909634

RESUMO

BACKGROUND: Parkinson's disease is characterized by motor dysfunctions including bradykinesia. In a recent study, eight weeks of daily transcranial stimulation with bipolar pulsed electromagnetic fields improved functional rate of force development and decreased inter-hand tremor coherence in patients with mild Parkinson's disease. OBJECTIVE: To investigate the effect of long-term treatment with transcranial bipolar pulsed electromagnetic fields on motor performance in terms of movement speed and on neurotrophic and angiogenic factors. METHODS: Patients diagnosed with idiopathic Parkinson's disease had either daily 30-min treatment with bipolar (±50 V) transcranial pulsed electromagnetic stimulation (squared pulses, 3ms duration) for three eight-week periods separated by one-week pauses (T-PEMF group) (n = 16) or were included in a PD-control group (n = 8). Movement speed was assessed in a six-cycle sit-to-stand task performed on a force plate. Cerebrospinal fluid and venous blood were collected and analyzed for erythropoietin and vascular endothelial growth factor. RESULTS: Major significant improvement of movement speed compared to the natural development of the disease was found (p = 0.001). Thus, task completion time decreased gradually during the treatment period from 10.10s to 8.23s (p<0.001). The untreated PD-control group did not change (p = 0.458). The treated group did not differ statistically from that of a healthy age matched reference group at completion of treatment. Erythropoietin concentration in the cerebrospinal fluid also increased significantly in the treated group (p = 0.012). CONCLUSION: Long-term treatment with transcranial bipolar pulsed electromagnetic fields increased movement speed markedly and elevated erythropoietin levels. We hypothesize that treatment with transcranial bipolar pulsed electromagnetic fields improved functional performance by increasing dopamine levels in the brain, possibly through erythropoietin induced neural repair and/or protection of dopaminergic neurons.


Assuntos
Campos Eletromagnéticos , Eritropoetina/líquido cefalorraquidiano , Magnetoterapia , Movimento , Doença de Parkinson , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Estudos Prospectivos
7.
Stem Cell Reports ; 16(2): 281-294, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33482100

RESUMO

Microglia have recently been established as key regulators of brain development. However, their role in neuronal subtype specification remains largely unknown. Using three different co-culture setups, we show that microglia-secreted factors enhance dopaminergic differentiation of somatic and induced pluripotent stem cell-derived human neural stem cells (NSCs). The effect was consistent across different NSC and microglial cell lines and was independent of prior microglial activation, although restricted to microglia of embryonic origin. We provide evidence that the effect is mediated through reduced cell proliferation and decreased apoptosis and necrosis orchestrated in a sequential manner during the differentiation process. tumor necrosis factor alpha, interleukin-1ß, and insulinlike growth factor 1 are identified as key mediators of the effect and shown to directly increase dopaminergic differentiation of human NSCs. These findings demonstrate a positive effect of microglia on dopaminergic neurogenesis and may provide new insights into inductive and protective factors that can stimulate in vitro derivation of dopaminergic neurons.


Assuntos
Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Microglia/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Dopamina/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Fator de Necrose Tumoral alfa/metabolismo
8.
CNS Neurol Disord Drug Targets ; 19(8): 584-598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32640967

RESUMO

Autoimmune Encephalitides (AE) comprises a group of diseases with antibodies against neuronal synaptic and cell surface antigens. Since the discovery of the most common subtype, NMethyl- D-Aspartate (NMDA) receptor encephalitis, an astonishing number of novel disease-causing antibodies have been described. This includes other glutamatergic and GABAergic receptor antibodies and antibodies against various other surface proteins. Many of these novel conditions present as limbic encephalitis with memory impairment, psychiatric features and epileptic seizures, often alongside subtype specific clinical features. Others present with a clinical disease course specific to the antibody. In contrast to the well-known paraneoplastic syndromes with antibodies directed against intracellular antigens (e.g. limbic encephalitis with Hu antibodies), autoimmune encephalitides are often highly responsive to immunotherapy, with a good outcome if diagnosed and treated early. Prognosis depends on aggressive immunotherapy, often with a combination of corticosteroids, intravenous immunoglobulin, plasma exchange or in some cases anti-CD20 therapy and cyclophosphamide. Other treatment regimens exist, and prognosis varies between disease subtypes and occurrence of underlying cancer. We review current knowledge on subtype-specific clinical presentation, disease mechanisms, diagnosis including pitfalls, treatment paradigms and outcome in autoimmune encephalitides, and provide suggestions for future research.


Assuntos
Doenças Autoimunes do Sistema Nervoso/diagnóstico , Encefalite/diagnóstico , Autoanticorpos , Humanos , Imunoterapia , Receptores de N-Metil-D-Aspartato
9.
Brain Behav Immun ; 82: 279-297, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31505254

RESUMO

BACKGROUND: Although tumor necrosis factor (TNF) inhibitors are used to treat chronic inflammatory diseases, there is little information about how long-term inhibition of TNF affects the homeostatic functions that TNF maintains in the intact CNS. MATERIALS AND METHODS: To assess whether developmental TNF deficiency causes alterations in the naïve CNS, we estimated the number of proliferating cells, microglia, and neurons in the developing neocortex of E13.5, P7 and adult TNF knock out (TNF-/-) mice and wildtype (WT) littermates. We also measured changes in gene and protein expression and monoamine levels in adult WT and TNF-/- mice. To evaluate long-term effects of TNF inhibitors, we treated healthy adult C57BL/6 mice with either saline, the selective soluble TNF inhibitor XPro1595, or the nonselective TNF inhibitor etanercept. We estimated changes in cell number and protein expression after two months of treatment. We assessed the effects of TNF deficiency on cognition by testing adult WT and TNF-/- mice and mice treated with saline, XPro1595, or etanercept with specific behavioral tasks. RESULTS: TNF deficiency decreased the number of proliferating cells and microglia and increased the number of neurons. At the same time, TNF deficiency decreased the expression of WNT signaling-related proteins, specifically Collagen Triple Helix Repeat Containing 1 (CTHRC1) and Frizzled receptor 6 (FZD6). In contrast to XPro1595, long-term inhibition of TNF with etanercept in adult C57BL/6 mice decreased the number of BrdU+ cells in the granule cell layer of the dentate gyrus. Etanercept, but not XPro1595, also impaired spatial learning and memory in the Barnes maze memory test. CONCLUSION: TNF deficiency impacts the organization of neurogenic zones and alters the cell composition in brain. Long-term inhibition of TNF with the nonselective TNF inhibitor etanercept, but not the soluble TNF inhibitor XPro1595, decreases neurogenesis in the adult mouse hippocampus and impairs learning and memory after two months of treatment.


Assuntos
Córtex Cerebral/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/deficiência , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Etanercepte/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Via de Sinalização Wnt
10.
Front Neurosci ; 13: 781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440125

RESUMO

BACKGROUND: Tumor necrosis factor, which exists both as a soluble (solTNF) and a transmembrane (tmTNF) protein, plays an important role in post-stroke inflammation. The objective of the present study was to test the effect of topical versus intracerebroventricular administration of XPro1595 (a solTNF inhibitor) and etanercept (a solTNF and tmTNF inhibitor) compared to saline on output measures such as infarct volume and post-stroke inflammation in mice. METHODS: Adult male C57BL/6 mice were treated topically (2.5 mg/ml/1µl/h for 3 consecutive days) or intracerebroventricularly (1.25 mg/kg/0.5 ml, once) with saline, XPro1595, or etanercept immediately after permanent middle cerebral artery occlusion (pMCAO). Mice were allowed to survive 1 or 3 days. Infarct volume, microglial and leukocyte profiles, and inflammatory markers were evaluated. RESULTS: We found that topical, and not intracerebroventricular, administration of XPro1595 reduced infarct volume at both 1 and 3 days after pMCAO. Etanercept showed no effect. We observed no changes in microglial or leukocyte populations. XPro1595 increased gene expression of P2ry12 at 1 day and Trem2 at 1 and 3 days, while decreasing Cx3cr1 expression at 1 and 3 days after pMCAO, suggesting a change in microglial activation toward a phagocytic phenotype. CONCLUSION: Our data demonstrate that topical administration of XPro1595 for 3 consecutive days decreases infarct volumes after ischemic stroke, while modifying microglial activation and the inflammatory response post-stroke. This suggests that inhibitors of solTNF hold great promise for future neuroprotective treatment in ischemic stroke.

11.
Eur J Neurosci ; 49(4): 497-509, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471165

RESUMO

Parkinson's disease is a neurodegenerative disease resulting in degeneration of midbrain dopaminergic neurons. Exploratory studies using human foetal tissue or predifferentiated stem cells have suggested that intracerebral transplantation of dopaminergic precursor cells may become an effective treatment for patients with Parkinson's disease. However, strategies for dopaminergic stem cell differentiation vary widely in efficiency, and better methods still need to be developed. Hypoxia Inducible Factor 1 (HIF-1) is a transcription factor involved in the regulation of genes important for cellular adaption to hypoxia and low glucose supply. HIF-1 is to a large degree regulated by the availability of oxygen as in its presence, the subunit HIF-1α is degraded by HIF prolyl hydroxylase enzymes (HPHs). Stabilization of HIF-1α through inhibition of HPHs has been shown to increase dopaminergic differentiation of stem cells and to protect dopaminergic neurons against neurotoxins. This study investigated the effects of noncompetitive (FG-0041) and competitive (Compound A and JNJ-42041935) HIF-1α stabilizing compounds on the dopaminergic differentiation of human neural stem cells. Treatment with all HPH inhibitors at high oxygen tension (20%) resulted in HIF-1α stabilization as assessed by immunocytochemistry for HIF-1α and detection of increased levels of vascular endothelial growth factor in the conditioned culture medium. Following 10 days of HIF-1α stabilization, the cultures displayed a slightly reduced proliferative activity and significantly increased relative levels of tyrosine hydroxylase-positive dopaminergic neurons. In conclusion, HIF-1α stabilization may represent a promising strategy for the generation of dopaminergic neurons intended for use in experimental in vitro studies and cell replacement therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/farmacologia , Benzimidazóis/farmacologia , Linhagem Celular , Feto , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Mesencéfalo/citologia , Doença de Parkinson , Fenantrolinas/farmacologia , Pirazóis/farmacologia
12.
Cell Transplant ; 27(4): 648-653, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29701077

RESUMO

Idiopathic Parkinson's disease (PD) is a progressive neurodegenerative disorder, clinically manifested by cardinal motor symptoms including tremor at rest, bradykinesia, and muscle rigidity. Transplantation of dopaminergic (DAergic) neurons is an experimental therapy for PD, however, it is limited by suboptimal integration and low survival of grafts. Pretreatment of donor tissue may offer a strategy to improve properties of transplanted DAergic neurons and thereby clinical outcome. We have previously shown that a combination of neurotrophin-4/5 (NT-4/5) and glial cell line-derived neurotrophic factor (GDNF) demonstrated additive effects on rat ventral mesencephalic (VM) tissue. The present study investigated the effects of NT-4/5 and GDNF as single factors, or in combination on DAergic neurons, in organotypic explant cultures of fetal human ventral mesencephalon. For that purpose, free-floating roller-tube cultures were prepared from VM and the equally sized pieces grown for 1 week in the presence or absence of neurotrophic factors. Both neurotrophic factors increased dopamine content in the culture medium and in the number of tyrosine hydroxylase immunoreactive neurons, most prominently after combined GDNF + NT-4/5 treatment. Culture volumes did not differ between groups while content of lactate dehydrogenase in the culture medium was moderately reduced in all treated groups. In conclusion, we identified that a combination of GDNF and NT-4/5 robustly promoted differentiation and survival of human fetal VM DAergic neurons, an observation with potential promising impact for cell replacement approaches in PD.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fatores de Crescimento Neural/farmacologia , Células-Tronco Neurais/citologia , Substância Negra/citologia , Células Cultivadas , Humanos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
PLoS One ; 13(1): e0191207, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29338033

RESUMO

Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson's disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of ß-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson's disease.


Assuntos
Monóxido de Carbono/administração & dosagem , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Monóxido de Carbono/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Neurais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Silanos/administração & dosagem , Silanos/metabolismo
14.
Sci Rep ; 6: 39571, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004822

RESUMO

Focal cerebral ischaemia has an initial phase of inflammation and tissue injury followed by a later phase of resolution and repair. Mass spectrometry imaging (desorption electrospray ionization and matrix assisted laser desorption ionization) was applied on brain sections from mice 2 h, 24 h, 5d, 7d, and 20d after permanent focal cerebral ischaemia. Within 24 h, N-acyl-phosphatidylethanolamines, lysophosphatidylcholine, and ceramide accumulated, while sphingomyelin disappeared. At the later resolution stages, bis(monoacylglycero)phosphate (BMP(22:6/22:6)), 2-arachidonoyl-glycerol, ceramide-phosphate, sphingosine-1-phosphate, lysophosphatidylserine, and cholesteryl ester appeared. At day 5 to 7, dihydroxy derivates of docosahexaenoic and docosapentaenoic acid, some of which may be pro-resolving mediators, e.g. resolvins, were found in the injured area, and BMP(22:6/22:6) co-localized with the macrophage biomarker CD11b, and probably with cholesteryl ester. Mass spectrometry imaging can visualize spatiotemporal changes in the lipidome during the progression and resolution of focal cerebral inflammation and suggests that BMP(22:6/22:6) and N-acyl-phosphatidylethanolamines can be used as biomarkers for phagocytizing macrophages/microglia cells and dead neurones, respectively.


Assuntos
Biomarcadores/química , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/metabolismo , Espectrometria de Massas , Fagocitose , Animais , Ácido Araquidônico/química , Antígeno CD11b/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ativação Enzimática , Infarto da Artéria Cerebral Média/metabolismo , Inflamação , Lipídeos/química , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , Fosfolipases/química , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
PLoS One ; 11(7): e0159746, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27454178

RESUMO

AIMS: Glioblastoma is the most frequent and malignant brain tumor. Recurrence is inevitable and most likely connected to tumor invasion and presence of therapy resistant stem-like tumor cells. The aim was therefore to establish and characterize a three-dimensional in vivo-like in vitro model taking invasion and tumor stemness into account. METHODS: Glioblastoma stem cell-like containing spheroid (GSS) cultures derived from three different patients were established and characterized. The spheroids were implanted in vitro into rat brain slice cultures grown in stem cell medium and in vivo into brains of immuno-compromised mice. Invasion was followed in the slice cultures by confocal time-lapse microscopy. Using immunohistochemistry, we compared tumor cell invasion as well as expression of proliferation and stem cell markers between the models. RESULTS: We observed a pronounced invasion into brain slice cultures both by confocal time-lapse microscopy and immunohistochemistry. This invasion closely resembled the invasion in vivo. The Ki-67 proliferation indexes in spheroids implanted into brain slices were lower than in free-floating spheroids. The expression of stem cell markers varied between free-floating spheroids, spheroids implanted into brain slices and tumors in vivo. CONCLUSION: The established invasion model kept in stem cell medium closely mimics tumor cell invasion into the brain in vivo preserving also to some extent the expression of stem cell markers. The model is feasible and robust and we suggest the model as an in vivo-like model with a great potential in glioma studies and drug discovery.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Invasividade Neoplásica , Ratos , Esferoides Celulares , Células Tumorais Cultivadas
16.
Sci Rep ; 6: 29291, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384243

RESUMO

Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF). To address the function of TNF from this cellular source in focal cerebral ischemia we used TNF conditional knock out mice (LysMcreTNF(fl/fl)) in which the TNF gene was deleted in cells of the myeloid lineage, including microglia. The deletion reduced secreted TNF levels in lipopolysaccharide-stimulated cultured primary microglia by ~93%. Furthermore, phosphorylated-ERK/ERK ratios were significantly decreased in naïve LysMcreTNF(fl/fl) mice demonstrating altered ERK signal transduction. Micro-PET using (18)[F]-fluorodeoxyglucose immediately after focal cerebral ischemia showed increased glucose uptake in LysMcreTNF(fl/fl) mice, representing significant metabolic changes, that translated into increased infarct volumes at 24 hours and 5 days compared to littermates (TNFfl/fl). In naïve LysMcreTNF(fl/fl) mice cytokine levels were low and comparable to littermates. At 6 hours, TNF producing microglia were reduced by 56% in the ischemic cortex in LysMcreTNF(fl/fl) mice compared to littermate mice, whereas no TNF(+) leukocytes were detected. At 24 hours, pro-inflammatory cytokine (TNF, IL-1ß, IL-6, IL-5 and CXCL1) levels were significantly lower in LysMcreTNF(fl/fl) mice, despite comparable infiltrating leukocyte populations. Our results identify microglial TNF as beneficial and neuroprotective in the acute phase and as a modulator of neuroinflammation at later time points after experimental ischemia, which may contribute to regenerative recovery.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Células Mieloides/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-5/metabolismo , Interleucina-6/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Neuroproteção/fisiologia , Transdução de Sinais/fisiologia
17.
J Neurooncol ; 128(3): 395-404, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063952

RESUMO

Glioblastomas always recur despite surgery, radiotherapy and chemotherapy. A key player in the therapeutic resistance may be immature tumor cells with stem-like properties (TSCs) escaping conventional treatment. A group of promising molecular targets are microRNAs (miRs). miRs are small non-coding RNAs exerting post-transcriptional regulation of gene expression. In this study we aimed to identify over-expressed TSC-related miRs potentially amenable for therapeutic targeting. We used non-differentiated glioblastoma spheroid cultures (GSCs) containing TSCs and compared these to xenografts using a NanoString nCounter platform. This revealed 19 over-expressed miRs in the non-differentiated GSCs. Additionally, non-differentiated GSCs were compared to neural stem cells (NSCs) using a microarray platform. This revealed four significantly over-expressed miRs in the non-differentiated GSCs in comparison to the NSCs. The three most over-expressed miRs in the non-differentiated GSCs compared to xenografts were miR-126, -137 and -128. KEGG pathway analysis suggested the main biological function of these over-expressed miRs to be cell-cycle arrest and diminished proliferation. To functionally validate the profiling results suggesting association of these miRs with stem-like properties, experimental over-expression of miR-128 was performed. A consecutive limiting dilution assay confirmed a significantly elevated spheroid formation in the miR-128 over-expressing cells. This may provide potential therapeutic targets for anti-miRs to identify novel treatment options for GBM patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Análise em Microsséries , Transplante de Neoplasias , Células-Tronco Neurais/metabolismo , Ratos Nus , Esferoides Celulares/transplante
18.
J Neurooncol ; 126(1): 47-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26428358

RESUMO

Over-expressed microRNAs (miRs) are promising new targets in glioblastoma (GBM) therapy. Inhibition of over-expressed miRs has been shown to diminish GBM proliferation, invasion and angiogenesis, indicating a significant therapeutic potential. However, the methods utilized for miR inhibition have had low translational potential. In clinical trials convection-enhanced delivery (CED) has been applied for local delivery of compounds in the brain. The aim of this study was to determine if safe and efficient miR inhibition was possible by CED of an anti-miR. We used a highly invasive GBM orthotopic xenograft model and targeted a well-validated miR, let-7a, with a 2'-O-methoxyethyl anti-miR with a combined phosphodiester/phosphorothioate backbone to establish an initial proof of concept. In vitro, anti-let-7a was delivered unassisted to the patient-derived T87 glioblastoma spheroid culture. In vivo, anti-let-7a or saline were administered by CED into orthotopic T87-derived tumors. After 1 month of infusion, tumors were removed and tumor mRNA levels of the target-gene High-mobility group AT-hook 2 (HMGA2) were determined. In vitro, 5 days inhibition was superior to 1 day at de-repressing the let-7a target HMGA2 and the inhibition was stable for 24 h. In vivo, anti-miR integrity was preserved in the pumps and no animals showed signs of severe adverse effects attributable to the anti-miR treatment. HMGA2 tumor level was significantly de-repressed in the anti-miR treated animals. The results showed-as an initial proof of concept-that miRs can be efficiently inhibited using CED delivery of anti-miR. The next step is to apply CED for anti-miR delivery focusing on key oncogenic miRs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , MicroRNAs/metabolismo , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Convecção , Sistemas de Liberação de Medicamentos , Glioblastoma/metabolismo , Glioma/patologia , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/uso terapêutico , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Basic Clin Pharmacol Toxicol ; 116(4): 329-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25220647

RESUMO

Human neural stem cells (NSCs) from the developing embryo or the subventricular zone of the adult brain can potentially elicit brain repair after injury or disease, either via endogenous cell proliferation or by cell transplantation. Profound knowledge of the diverse signals affecting these cells is, however, needed to realize their therapeutic potential. Glutamate and group I metabotropic glutamate receptors (mGluRs) affect proliferation and survival of rodent NSCs both during embryonic and post-natal development. To investigate the role of group I mGluRs (mGluR1 and mGluR5) on human NSCs, we differentiated an immortalized, forebrain-derived stem cell line in the presence or absence of glutamate and with addition of either the group I mGluR agonist DHPG or the selective antagonists, MPEP (mGluR5) and LY367385 (mGluR1). Characterization of differentiated cells revealed that both mGluR1 and mGluR5 were present on the cells. Addition of glutamate to the growth medium significantly increased cell proliferation and reduced cell death, resulting in increased cell numbers. In the presence of glutamate, selective activation of group I mGluRs reduced gliogenesis, whereas selective inhibition of group I mGluRs reduced neurogenesis. Our results substantiate the importance of glutamate signalling in the regulation of human NSCs and may as such be applied to promote proliferation and neuronal differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Contagem de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/análise , L-Lactato Desidrogenase/metabolismo , Neurogênese/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Prosencéfalo/citologia , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos
20.
PLoS One ; 9(5): e96465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788190

RESUMO

Neural stem cells (NSCs) constitute a promising source of cells for transplantation in Parkinson's disease (PD), but protocols for controlled dopaminergic differentiation are not yet available. Here we investigated the influence of oxygen on dopaminergic differentiation of human fetal NSCs derived from the midbrain and forebrain. Cells were differentiated for 10 days in vitro at low, physiological (3%) versus high, atmospheric (20%) oxygen tension. Low oxygen resulted in upregulation of vascular endothelial growth factor and increased the proportion of tyrosine hydroxylase-immunoreactive (TH-ir) cells in both types of cultures (midbrain: 9.1 ± 0.5 and 17.1 ± 0.4 (P<0.001); forebrain: 1.9 ± 0.4 and 3.9 ± 0.6 (P<0.01) percent of total cells). Regardless of oxygen levels, the content of TH-ir cells with mature neuronal morphologies was higher for midbrain as compared to forebrain cultures. Proliferative Ki67-ir cells were found in both types of cultures, but the relative proportion of these cells was significantly higher for forebrain NSCs cultured at low, as compared to high, oxygen tension. No such difference was detected for midbrain-derived cells. Western blot analysis revealed that low oxygen enhanced ß-tubulin III and GFAP expression in both cultures. Up-regulation of ß-tubulin III was most pronounced for midbrain cells, whereas GFAP expression was higher in forebrain as compared to midbrain cells. NSCs from both brain regions displayed less cell death when cultured at low oxygen tension. Following mictrotransplantation into mouse striatal slice cultures predifferentiated midbrain NSCs were found to proliferate and differentiate into substantial numbers of TH-ir neurons with mature neuronal morphologies, particularly at low oxygen. In contrast, predifferentiated forebrain NSCs microtransplanted using identical conditions displayed little proliferation and contained few TH-ir cells, all of which had an immature appearance. Our data may reflect differences in dopaminergic differentiation capacity and region-specific requirements of NSCs, with the dopamine-depleted striatum cultured at low oxygen offering an attractive micro-environment for midbrain NSCs.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Células-Tronco Fetais/citologia , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Fetais/metabolismo , Feto , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Mesencéfalo , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Prosencéfalo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA