Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Cosmet Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134925

RESUMO

BACKGROUND: Use of permanent hair dyes causes unintended oxidative damage during the short time frame of the dyeing process that leads to perceivable changes in the feel, manageability and appearance of hair. Moreover, after hair has been dyed, regular exposure to the sun as a key environmental stressor continues to stimulate additional oxidative damage and to induce newly developed hair colours to fade prematurely or undergo changes in colour quality. OBJECTIVE: To document the utility of acetyl zingerone methyl ether (MAZ) as a newly designed haircare ingredient to afford extra protection against oxidative damage and safeguard the integrity of hair colour. RESULTS: We demonstrate that MAZ is compatible chemically with the high alkaline conditions required for the colouring process and from theoretical calculations preferentially binds Fe and Cu ions relative to Ca or Zn ions. In model Fenton reactions MAZ effectively chelated active redox metals (Fe and Cu ions) in the presence of excess Ca+2 ions to inhibit the production of hydroxyl radicals, and in separate studies, MAZ neutralized singlet oxygen with greater efficiency than α-tocopherol by a factor of 2.5. When mixed into permanent dyes prior to hair tress application, MAZ significantly reduced combing forces, and SEM images led to substantial reductions in visual signs of surface damage. In a 28-day clinical study, relative to controls, mixing MAZ into hair dyes prior to application interfered neither with colour development nor with ability to cover grey hair and led to significant improvements in perceived attributes associated with hair's condition immediately following the dyeing process. Over a 28-day maintenance phase, especially between Day 14 and Day 28, continued use of shampoo and conditioner containing MAZ significantly preserved gloss measurements and hair colour in terms of longevity and colour quality as remaining desired and fresh compared to use of control shampoo and conditioner. CONCLUSION: This work establishes MAZ as a next-generation hair care ingredient for use in permanent dyes to attenuate oxidative damage and in shampoos and conditioners to promote longevity of hair colour and to maintain overall health and appearance of hair on a daily basis.


CONTEXTE: L'utilisation de colorants capillaires permanents provoque des dommages oxydatifs involontaires pendant la courte période du processus de teinture, ce qui entraîne des changements perceptibles dans la texture, la maniabilité et l'aspect des cheveux. De plus, après la teinture des cheveux, une exposition régulière au soleil comme facteur de stress environnemental clé continue de stimuler des dommages oxydatifs supplémentaires et d'induire une décoloration prématurée des nouvelles couleurs de cheveux ou des changements dans la qualité de la couleur. OBJECTIF: Documenter l'utilité de l'éther méthylique d'acétyl zingérone (MAZ) en tant qu'ingrédient de soin capillaire nouvellement conçu pour offrir une protection supplémentaire contre les dommages oxydatifs et sauvegarder l'intégrité de la couleur des cheveux. RÉSULTATS: Nous démontrons que le MAZ est chimiquement compatible avec les conditions alcalines élevées requises pour le processus de coloration et, d'après les calculs théoriques, lie de préférence les ions Fe et Cu aux ions Ca ou Zn. Dans les réactions de Fenton, le MAZ chélate efficacement les métaux redox actifs (atomes de Fe et de Cu) en présence d'un excès d'ions Ca+2 pour inhiber la production de radicaux hydroxyles et, dans des études séparées, le MAZ neutralise l'oxygène seul avec une efficacité supérieure à celle de l'α­tocophérol, d'un facteur de 2.5. Lorsqu'il est mélangé à des teintures permanentes avant l'application de la coiffure, le MAZ réduit de manière significative les forces de peignage et, d'après les images SEM, conduit à des réductions substantielles des signes visuels de dommages à la surface. Dans une étude clinique de 28 jours, le mélange de MAZ dans les teintures capillaires avant l'application n'interfère pas avec le développement de la couleur ni avec la capacité à couvrir les cheveux gris et conduit à des améliorations significatives des attributs perçus associés à l'état des cheveux immédiatement après le processus de teinture. Au cours d'une phase d'entretien de 28 jours, en particulier entre le 14ème et le 28ème jour, l'utilisation continue du shampooing et de l'après­shampooing contenant du MAZ a permis de préserver de manière significative les mesures de brillance et la couleur des cheveux en termes de longévité et de qualité de la couleur, qui reste telle que désirée et nette, par rapport à l'utilisation du shampooing et de l'après­shampooing de contrôle. CONCLUSION: Ces travaux font du MAZ un ingrédient de nouvelle génération pour les soins capillaires, à utiliser dans les teintures permanentes pour atténuer les dommages oxydatifs et dans les shampooings, et après­shampooings pour promouvoir la longévité de la couleur des cheveux et maintenir la santé et l'apparence générales des cheveux au quotidien.

2.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371898

RESUMO

The cumulative damage skin sustains from exposure to environmental stressors throughout life exerts significant effects on skin aging and cancer development. One of the main ways by which environmental stressors mediate their effects within skin is through induction of reactive oxygen species (ROS). In this review, we chronicle the multiple properties by which acetyl zingerone (AZ) as a skincare ingredient can benefit skin (1) by helping manage overproduction of ROS through multiple routes as an antioxidant, physical quencher and selective chelator, (2) by fortifying protection after UV exposure ends to prevent the type of epidermal DNA damage that correlates with development of skin cancer, (3) by modulating matrisome activity and nurturing the integrity of the extracellular matrix (ECM) within the dermis and (4) through its proficient ability to neutralize singlet oxygen, by stabilizing the ascorbic acid precursor tetrahexyldecyl ascorbate (THDC) in the dermal microenvironment. This activity improves THDC bioavailability and may blunt pro-inflammatory effects of THDC, such as activation of type I interferon signaling. Moreover, AZ is photostable and can sustain its properties during UV exposure, in contrast to α-tocopherol. All these properties of AZ translate into measurable clinical benefits to improve the visual appearance of photoaged facial skin and to strengthen the skin's own defenses against sun damage.

3.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36829837

RESUMO

Cyclobutane pyrimidine dimers (CPDs) are ultraviolet radiation (UV)-induced carcinogenic DNA photoproducts that lead to UV signature mutations in melanoma. Previously, we discovered that, in addition to their incident formation (iCPDs), UV exposure induces melanin chemiexcitation (MeCh), where UV generates peroxynitrite (ONOO-), which oxidizes melanin into melanin-carbonyls (MCs) in their excited triplet state. Chronic MeCh and energy transfer by MCs to DNA generates CPDs for several hours after UV exposure ends (dark CPD, dCPDs). We hypothesized that MeCh and the resulting dCPDs can be inhibited using MeCh inhibitors, and MC and ONOO- scavengers. Here, we investigated the efficacy of Acetyl Zingerone (AZ), a plant-based phenolic alkanone, and its chemical analogs in inhibiting iCPDs and dCPDs in skin fibroblasts, keratinocytes, and isogenic pigmented and albino melanocytes. While AZ and its methoxy analog, 3-(4-Methoxy-benzyl)-Pentane-2,4-dione (MBPD) completely inhibited the dCPDs, MBPD also inhibited ~50% of iCPDs. This suggests the inhibition of ~80% of total CPDs at any time point post UV exposure by MBPD, which is markedly significant. MBPD downregulated melanin synthesis, which is indispensable for dCPD generation, but this did not occur with AZ. Meanwhile, AZ and MBPD both upregulated the expression of nucleotide excision repair (NER) pathways genes including Xpa, Xpc, and Mitf. AZ and its analogs were non-toxic to the skin cells and did not act as photosensitizers. We propose that AZ and MBPD represent "next-generation skin care additives" that are safe and effective for use not only in sunscreens but also in other specialized clinical applications owing to their extremely high efficacy in blocking both iCPDs and dCPDs.

4.
J Cosmet Dermatol ; 11(2): 134-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22672278

RESUMO

No one would underestimate the importance of sunlight to the evolution of life on the earth and its role in human development. However, all humans - especially individuals who are lightly pigmented or whose occupation or lifestyle exposes them to excessive amounts of sunlight - are potentially susceptible to its deleterious effects. These effects can range from acute biological responses, such as sunburn and skin tanning, to conditions resulting from chronic exposure such as photoaged skin and potentially life-threatening conditions such as skin cancer. The objective of this review is to present a concise and up-to-date perspective on the effects of UVB, UVA, visible, and infrared radiation on cutaneous biochemistry and physiology.


Assuntos
Raios Infravermelhos/efeitos adversos , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Cutâneas/etiologia , Pele/efeitos da radiação , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Transformação Celular Neoplásica/efeitos da radiação , Radicais Livres , Humanos , Sistema Imunitário/efeitos da radiação , Estresse Oxidativo , Pele/imunologia , Envelhecimento da Pele/efeitos da radiação , Dermatopatias/etiologia
5.
Am J Clin Dermatol ; 11(6): 413-21, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20806994

RESUMO

BACKGROUND: Solar UV radiation (UVR) is composed of UVB (290-320 nm) and UVA (320-400 nm) wavelengths. Only two sunscreen active ingredients approved in the US, avobenzone (butylmethoxydibenzoylmethane) and zinc oxide (ZnO), provide true broad-spectrum protection against UVA wavelengths >360 nm. Although effective against shorter UVR wavelengths <360 nm, titanium dioxide (TiO(2)) is also often believed to confer broad-spectrum protection and is substituted for ZnO or avobenzone. To sustain its absorption capacity within a sunscreen film during UVR exposure, avobenzone needs to be formulated into sunscreen products using sound formulation strategies. OBJECTIVES: To characterize the efficacy of avobenzone, ZnO, and TiO(2) in terms of their abilities to provide broad UVA protection and to demonstrate the effectiveness of the different formulation strategies used today to maintain the efficacy of avobenzone even during prolonged exposures to UVR. METHODS: UVA efficacy was assessed by measuring absorbance profiles in vitro using Vitro Skin® (IMS Inc., Orange, CT, USA) as an inert substrate and by determining UVA protection factors (PFA) on human skin. The impact of avobenzone loss on sun protection factor (SPF) and PFA values was evaluated by serially reducing avobenzone concentrations in an otherwise photostable product. The photostabilizing influence of specific formulation ingredients was monitored by measuring the extent to which they prevented UVR-induced degradation of avobenzone, whereas photostability of commercial sunscreen products was quantified by measuring the percentage change in absorbance within the UVB and UVA spectral regions following irradiation of thin product films on inert substrates. RESULTS: Model formulations containing 3% avobenzone or 5% ZnO provided superior attenuation of UVA wavelengths >360 nm compared with formulas containing 5% TiO(2). Additionally, sunscreen products of similar SPF containing avobenzone or ZnO exhibited significantly higher PFA values than those containing TiO(2). The addition of photostabilized avobenzone or ZnO increased PFA values nearly 3-fold, whereas the addition of TiO(2) increased PFA values only modestly. Judicious selection of sunscreen actives alone or in combination with extra stabilizing agents maintained the photostability of avobenzone in formulations to deliver sustained broad-spectrum absorbance during 4 hours of exposure to UVR. Small losses (<20%) of avobenzone did not significantly reduce a product's protective effects as measured by SPF and PFA values on human skin. CONCLUSIONS: TiO(2) provided neither the same level of UVA attenuation nor the same degree of UVA protection on human skin as did products containing photostabilized avobenzone or ZnO. Hence, TiO(2) cannot be considered a substitute for avobenzone or ZnO in providing high levels of UVA protection to human skin. Use of proper formulation strategies can ensure that avobenzone losses are minimized to the extent that they have no impact on a product's ability to deliver sustained protection, even over periods of prolonged exposure to UVR.


Assuntos
Chalconas/farmacologia , Pele/efeitos da radiação , Queimadura Solar/prevenção & controle , Protetores Solares/química , Protetores Solares/farmacologia , Titânio/farmacologia , Raios Ultravioleta , Óxido de Zinco/farmacologia , Estabilidade de Medicamentos , Humanos , Propiofenonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA