Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Radiol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38948965

RESUMO

OBJECTIVES: Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 is a clinical and research standard for evaluating malignant tumors and lymph node metastasis. However, quantitative analysis of nodal status is limited to measurement of short axis diameter (SAD), and metastatic lymph nodes below 10 mm in SAD are often not detected. The purpose of this study was to evaluate the value of multifrequency magnetic resonance elastography (MRE) when added to RECIST 1.1 for detection of lymph node metastasis. MATERIALS AND METHODS: Twenty-five benign and 82 metastatic lymph nodes were prospectively examined by multifrequency MRE at 1.5 T using tomoelastography postprocessing at 30, 40, 50, and 60 Hz (total scan time of 4 minutes). Shear wave speed as a surrogate of soft tissue stiffness was provided in m/s. Positron emission tomography-computed tomography was used as reference standard for identification of abdominal lymph node metastasis from histologically confirmed primary tumors. The diagnostic performance of MRE was compared with that of SAD according to RECIST 1.1 and evaluated by receiver operating characteristic curve analysis using generalized linear mixed models and binary logistic mixed models. Sensitivity, specificity, and predictive values were calculated for different cutoffs. RESULTS: Metastatic lymph nodes (1.90 ± 0.57 m/s) were stiffer than benign lymph nodes (0.98 ± 0.20 m/s, P < 0.001). An area under the curve of 0.95 for a cutoff of 1.32 m/s was calculated. Using a conservative approach with 1.0 specificity, we found sensitivity (SAD/MRE/MRE + SAD, 0.56/0.84/0.88), negative predictive values (0.41/0.66/0.71), and overall accuracy (0.66/0.88/0.91) to be improved using MRE and even higher for combined MRE and SAD. CONCLUSIONS: Multifrequency MRE improves metastatic abdominal lymph node detection by 25% based on higher tissue stiffness-even for lymph nodes with an SAD ≤10 mm. Stiffness information is quick to obtain and would be a promising supplement to RECIST.

2.
Proc Natl Acad Sci U S A ; 119(35): e2211310119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994674

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). Astrocytes are the most abundant glial cells in the CNS, and their dysfunction contributes to the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis (EAE). Recent advances highlight the pivotal role of cellular metabolism in programming immune responses. However, the underlying immunometabolic mechanisms that drive astrocyte pathogenicity remain elusive. Nicotinamide adenine dinucleotide (NAD+) is a vital coenzyme involved in cellular redox reactions and a substrate for NAD+-dependent enzymes. Cellular NAD+ levels are dynamically controlled by synthesis and degradation, and dysregulation of this balance has been associated with inflammation and disease. Here, we demonstrate that cell-autonomous generation of NAD+ via the salvage pathway regulates astrocyte immune function. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in the salvage pathway, results in depletion of NAD+, inhibits oxidative phosphorylation, and limits astrocyte inflammatory potential. We identified CD38 as the main NADase up-regulated in reactive mouse and human astrocytes in models of neuroinflammation and MS. Genetic or pharmacological blockade of astrocyte CD38 activity augmented NAD+ levels, suppressed proinflammatory transcriptional reprogramming, impaired chemotactic potential to inflammatory monocytes, and ameliorated EAE. We found that CD38 activity is mediated via calcineurin/NFAT signaling in mouse and human reactive astrocytes. Thus, NAMPT-NAD+-CD38 circuitry in astrocytes controls their ability to meet their energy demands and drives the expression of proinflammatory transcriptional modules, contributing to CNS pathology in EAE and, potentially, MS. Our results identify candidate therapeutic targets in MS.


Assuntos
ADP-Ribosil Ciclase 1 , Astrócitos , Encefalomielite Autoimune Experimental , Esclerose Múltipla , NAD , ADP-Ribosil Ciclase 1/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Autoimunidade , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Humanos , Camundongos , Esclerose Múltipla/imunologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo
3.
Brain ; 145(9): 3288-3307, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35899587

RESUMO

Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/genética , Camundongos , Microambiente Tumoral , Virulência
4.
Magn Reson Med ; 87(3): 1435-1445, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34752638

RESUMO

PURPOSE: The zebrafish (Danio rerio) has become an important animal model in a wide range of biomedical research disciplines. Growing awareness of the role of biomechanical properties in tumor progression and neuronal development has led to an increasing interest in the noninvasive mapping of the viscoelastic properties of zebrafish by elastography methods applicable to bulky and nontranslucent tissues. METHODS: Microscopic multifrequency MR elastography is introduced for mapping shear wave speed (SWS) and loss angle (φ) as markers of stiffness and viscosity of muscle, brain, and neuroblastoma tumors in postmortem zebrafish with 60 µm in-plane resolution. Experiments were performed in a 7 Tesla MR scanner at 1, 1.2, and 1.4 kHz driving frequencies. RESULTS: Detailed zebrafish viscoelasticity maps revealed that the midbrain region (SWS = 3.1 ± 0.7 m/s, φ = 1.2 ± 0.3 radian [rad]) was stiffer and less viscous than telencephalon (SWS = 2.6 ± 0. 5 m/s, φ = 1.4 ± 0.2 rad) and optic tectum (SWS = 2.6 ± 0.5 m/s, φ = 1.3 ± 0.4 rad), whereas the cerebellum (SWS = 2.9 ± 0.6 m/s, φ = 0.9 ± 0.4 rad) was stiffer but less viscous than both (all p < .05). Overall, brain tissue (SWS = 2.9 ± 0.4 m/s, φ = 1.2 ± 0.2 rad) had similar stiffness but lower viscosity values than muscle tissue (SWS = 2.9 ± 0.5 m/s, φ = 1.4 ± 0.2 rad), whereas neuroblastoma (SWS = 2.4 ± 0.3 m/s, φ = 0.7 ± 0.1 rad, all p < .05) was the softest and least viscous tissue. CONCLUSION: Microscopic multifrequency MR elastography-generated maps of zebrafish show many details of viscoelasticity and resolve tissue regions, of great interest in neuromechanical and oncological research and for which our study provides first reference values.


Assuntos
Técnicas de Imagem por Elasticidade , Animais , Encéfalo/diagnóstico por imagem , Valores de Referência , Viscosidade , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA