Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4120, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750052

RESUMO

5q-associated spinal muscular atrophy (SMA) is a motoneuron disease caused by mutations in the survival motor neuron 1 (SMN1) gene. Adaptive immunity may contribute to SMA as described in other motoneuron diseases, yet mechanisms remain elusive. Nusinersen, an antisense treatment, enhances SMN2 expression, benefiting SMA patients. Here we have longitudinally investigated SMA and nusinersen effects on local immune responses in the cerebrospinal fluid (CSF) - a surrogate of central nervous system parenchyma. Single-cell transcriptomics (SMA: N = 9 versus Control: N = 9) reveal NK cell and CD8+ T cell expansions in untreated SMA CSF, exhibiting activation and degranulation markers. Spatial transcriptomics coupled with multiplex immunohistochemistry elucidate cytotoxicity near chromatolytic motoneurons (N = 4). Post-nusinersen treatment, CSF shows unaltered protein/transcriptional profiles. These findings underscore cytotoxicity's role in SMA pathogenesis and propose it as a therapeutic target. Our study illuminates cell-mediated cytotoxicity as shared features across motoneuron diseases, suggesting broader implications.


Assuntos
Encéfalo , Células Matadoras Naturais , Neurônios Motores , Atrofia Muscular Espinal , Oligonucleotídeos , Humanos , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/patologia , Atrofia Muscular Espinal/genética , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Análise de Célula Única , Citotoxicidade Imunológica/efeitos dos fármacos , Lactente , Pré-Escolar , Criança , Transcriptoma
2.
Sci Immunol ; 9(95): eadj9730, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728414

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy for the treatment of neurological autoimmune diseases is promising, but CAR T cell kinetics and immune alterations after treatment are poorly understood. Here, we performed single-cell multi-omics sequencing of paired cerebrospinal fluid (CSF) and blood samples from patients with neuromyelitis optica spectrum disorder (NMOSD) treated with anti-B cell maturation antigen (BCMA) CAR T cells. Proliferating cytotoxic-like CD8+ CAR T cell clones were identified as the main effectors in autoimmunity. Anti-BCMA CAR T cells with enhanced features of chemotaxis efficiently crossed the blood-CSF barrier, eliminated plasmablasts and plasma cells in the CSF, and suppressed neuroinflammation. The CD44-expressing early memory phenotype in infusion products was potentially associated with CAR T cell persistence in autoimmunity. Moreover, CAR T cells from patients with NMOSD displayed distinctive features of suppressed cytotoxicity compared with those from hematological malignancies. Thus, we provide mechanistic insights into CAR T cell function in patients with neurological autoimmune disease.


Assuntos
Autoimunidade , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoimunidade/imunologia , Sistema Nervoso Central/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/terapia , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única
3.
EMBO Mol Med ; 16(4): 966-987, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409527

RESUMO

B-cell maturation antigen (BCMA), expressed in plasmablasts and plasma cells, could serve as a promising therapeutic target for autoimmune diseases. We reported here chimeric antigen receptor (CAR) T cells targeting BCMA in two patients with highly relapsed and refractory myasthenia gravis (one with AChR-IgG, and one with MuSk-IgG). Both patients exhibited favorable safety profiles and persistent clinical improvements over 18 months. Reconstitution of B-cell lineages with sustained reduced pathogenic autoantibodies might underlie the therapeutic efficacy. To identify the possible mechanisms underlying the therapeutic efficacy of CAR-T cells in these patients, longitudinal single-cell RNA and TCR sequencing was conducted on serial blood samples post infusion as well as their matching infusion products. By tracking the temporal evolution of CAR-T phenotypes, we demonstrated that proliferating cytotoxic-like CD8 clones were the main effectors in autoimmunity, whereas compromised cytotoxic and proliferation signature and profound mitochondrial dysfunction in CD8+ Te cells before infusion and subsequently defect CAR-T cells after manufacture might explain their characteristics in these patients. Our findings may guide future studies to improve CAR T-cell immunotherapy in autoimmune diseases.


Assuntos
Mieloma Múltiplo , Miastenia Gravis , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Antígeno de Maturação de Linfócitos B/genética , Linhagem da Célula , Miastenia Gravis/terapia , Linfócitos T , Imunoglobulina G
4.
J Autoimmun ; 135: 102985, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621173

RESUMO

Autoimmune Encephalitis (AE) spans a group of non-infectious inflammatory conditions of the central nervous system due to an imbalanced immune response. Aiming to elucidate the pathophysiological mechanisms of AE, we applied an unsupervised proteomic approach to analyze the cerebrospinal fluid (CSF) protein profile of AE patients with autoantibodies against N-methyl-d-aspartate receptor (NMDAR) (n = 9), leucine-rich glioma-inactivated protein 1 (LGI1) (n = 9), or glutamate decarboxylase 65 (GAD65) (n = 8) compared to 9 patients with relapsing-remitting multiple sclerosis as inflammatory controls, and 10 patients with somatic symptom disorder as non-inflammatory controls. We found a dysregulation of the complement system, a disbalance between pro-inflammatory and anti-inflammatory proteins on the one hand, and dysregulation of proteins involved in synaptic transmission, synaptogenesis, brain connectivity, and neurodegeneration on the other hand to a different extent in all AE subtypes compared to non-inflammatory controls. Furthermore, elevated levels of several proteases and reduction in protease inhibitors could be detected in all AE subtypes compared to non-inflammatory controls. Moreover, the different AE subtypes showed distinct protein profiles compared to each other and inflammatory controls which may facilitate future identification of disease-specific biomarkers. Overall, CSF proteomics provides insights into the complex pathophysiological mechanisms of AE, including immune dysregulation, neuronal dysfunction, neurodegeneration, and altered protease function.


Assuntos
Encefalite , Esclerose Múltipla Recidivante-Remitente , Humanos , Proteômica , Proteínas , Autoanticorpos
5.
Proc Natl Acad Sci U S A ; 119(43): e2123476119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251998

RESUMO

Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPß in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.


Assuntos
Microglia , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Macrófagos , Neurônios
6.
Genome Med ; 14(1): 109, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153593

RESUMO

BACKGROUND: Primary central nervous system lymphoma (PCNSL) is a rare lymphoma of the central nervous system, usually of diffuse large B cell phenotype. Stereotactic biopsy followed by histopathology is the diagnostic standard. However, limited material is available from CNS biopsies, thus impeding an in-depth characterization of PCNSL. METHODS: We performed flow cytometry, single-cell RNA sequencing, and B cell receptor sequencing of PCNSL cells released from biopsy material, blood, and cerebrospinal fluid (CSF), and spatial transcriptomics of biopsy samples. RESULTS: PCNSL-released cells were predominantly activated CD19+CD20+CD38+CD27+ B cells. In single-cell RNA sequencing, PCNSL cells were transcriptionally heterogeneous, forming multiple malignant B cell clusters. Hyperexpanded B cell clones were shared between biopsy- and CSF- but not blood-derived cells. T cells in the tumor microenvironment upregulated immune checkpoint molecules, thereby recognizing immune evasion signals from PCNSL cells. Spatial transcriptomics revealed heterogeneous spatial organization of malignant B cell clusters, mirroring their transcriptional heterogeneity across patients, and pronounced expression of T cell exhaustion markers, co-localizing with a highly malignant B cell cluster. CONCLUSIONS: Malignant B cells in PCNSL show transcriptional and spatial intratumor heterogeneity. T cell exhaustion is frequent in the PCNSL microenvironment, co-localizes with malignant cells, and highlights the potential of personalized treatments.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Proteínas de Checkpoint Imunológico , Linfoma/diagnóstico , Linfoma/genética , Linfoma/patologia , Receptores de Antígenos de Linfócitos B , Linfócitos T , Microambiente Tumoral
7.
Genome Med ; 14(1): 94, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978442

RESUMO

The cerebrospinal fluid (CSF) features a unique immune cell composition and is in constant contact with the brain borders, thus permitting insights into the brain to diagnose and monitor diseases. Recently, the meninges, which are filled with CSF, were identified as a neuroimmunological interface, highlighting the potential of exploring central nervous system (CNS) immunity by studying CNS border compartments. Here, we summarize how single-cell transcriptomics of such border compartments advance our understanding of neurological diseases, the challenges that remain, and what opportunities novel multi-omic methods offer. Single-cell transcriptomics studies have detected cytotoxic CD4+ T cells and clonally expanded T and B cells in the CSF in the autoimmune disease multiple sclerosis; clonally expanded pathogenic CD8+ T cells were found in the CSF and in the brain adjacent to ß-amyloid plaques of dementia patients; in patients with brain metastases, CD8+ T cell clonotypes were shared between the brain parenchyma and the CSF and persisted after therapy. We also outline how novel multi-omic approaches permit the simultaneous measurements of gene expression, chromatin accessibility, and protein in the same cells, which remain to be explored in the CSF. This calls for multicenter initiatives to create single-cell atlases, posing challenges in integrating patients and modalities across centers. While high-dimensional analyses of CSF cells are challenging, they hold potential for personalized medicine by better resolving heterogeneous diseases and stratifying patients.


Assuntos
Linfócitos T CD8-Positivos , Esclerose Múltipla , Encéfalo/patologia , Sistema Nervoso Central/patologia , Humanos , Imunidade , Estudos Multicêntricos como Assunto
8.
Brain ; 145(5): 1711-1725, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661859

RESUMO

Alemtuzumab is a monoclonal antibody that causes rapid depletion of CD52-expressing immune cells. It has proven to be highly efficacious in active relapsing-remitting multiple sclerosis; however, the high risk of secondary autoimmune disorders has greatly complicated its use. Thus, deeper insight into the pathophysiology of secondary autoimmunity and potential biomarkers is urgently needed. The most critical time points in the decision-making process for alemtuzumab therapy are before or at Month 12, where the ability to identify secondary autoimmunity risk would be instrumental. Therefore, we investigated components of blood and CSF of up to 106 multiple sclerosis patients before and after alemtuzumab treatment focusing on those critical time points. Consistent with previous reports, deep flow cytometric immune-cell profiling (n = 30) demonstrated major effects on adaptive rather than innate immunity, which favoured regulatory immune cell subsets within the repopulation. The longitudinally studied CSF compartment (n = 18) mainly mirrored the immunological effects observed in the periphery. Alemtuzumab-induced changes including increased numbers of naïve CD4+ T cells and B cells as well as a clonal renewal of CD4+ T- and B-cell repertoires were partly reminiscent of haematopoietic stem cell transplantation; in contrast, thymopoiesis was reduced and clonal renewal of T-cell repertoires after alemtuzumab was incomplete. Stratification for secondary autoimmunity did not show clear immununological cellular or proteomic traits or signatures associated with secondary autoimmunity. However, a restricted T-cell repertoire with hyperexpanded T-cell clones at baseline, which persisted and demonstrated further expansion at Month 12 by homeostatic proliferation, identified patients developing secondary autoimmune disorders (n = 7 without secondary autoimmunity versus n = 5 with secondary autoimmunity). Those processes were followed by an expansion of memory B-cell clones irrespective of persistence, which we detected shortly after the diagnosis of secondary autoimmune disease. In conclusion, our data demonstrate that (i) peripheral immunological alterations following alemtuzumab are mirrored by longitudinal changes in the CSF; (ii) incomplete T-cell repertoire renewal and reduced thymopoiesis contribute to a proautoimmune state after alemtuzumab; (iii) proteomics and surface immunological phenotyping do not identify patients at risk for secondary autoimmune disorders; (iv) homeostatic proliferation with disparate dynamics of clonal T- and B-cell expansions are associated with secondary autoimmunity; and (v) hyperexpanded T-cell clones at baseline and Month 12 may be used as a biomarker for the risk of alemtuzumab-induced autoimmunity.


Assuntos
Doenças Autoimunes , Autoimunidade , Alemtuzumab/efeitos adversos , Doenças Autoimunes/induzido quimicamente , Humanos , Fenótipo , Proteômica
9.
Nat Commun ; 13(1): 1544, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318328

RESUMO

Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease.


Assuntos
Tumor Rabdoide , Animais , Células Germinativas/patologia , Humanos , Camundongos , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Análise de Célula Única , Transcriptoma
10.
Cell Res ; 32(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702947

RESUMO

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Assuntos
Canais de Potássio , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead , Humanos , Camundongos , NF-kappa B , Timócitos , Timo
11.
Ther Adv Neurol Disord ; 15: 17562864221144808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36601083

RESUMO

A middle-aged, previously healthy male patient presented with high fever, headache, and aching limbs for 3 days. Laboratory results showed signs of acute kidney injury, elevated procalcitonin, and mild thrombocytopenia. On neurological examination, he had no focal neurological deficits, especially no meningism or visual disturbances. Cerebrospinal fluid (CSF) examination showed mild lymphocytic pleocytosis, and magnetic resonance imaging (MRI) revealed a lesion of the splenium corporis callosum. The patient received anti-infective treatment with acyclovir and ceftriaxone until laboratory results returned positive hantavirus IgM and IgG antibodies in the serum indicating an active hantavirus infection. The renal retention parameters and thrombocytopenia receded following treatment with intravenous fluids, analgesic, and antipyretic agents. MRI follow-up 10 days later showed a residual small FLAIR-positive lesion without any persistent callosal diffusion abnormality. The patient was discharged symptom-free after 8 days and had recovered fully 2 months later. The source of infection in this patient remained unclear. Cytotoxic lesions of the corpus callosum (CLCC) are secondary lesions usually with a good prognosis but require further investigation regarding their underlying etiology and should not be confounded with primary callosal lesions, such as ischemia or lymphoma.

12.
Cell ; 184(26): 6281-6298.e23, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875227

RESUMO

While intestinal Th17 cells are critical for maintaining tissue homeostasis, recent studies have implicated their roles in the development of extra-intestinal autoimmune diseases including multiple sclerosis. However, the mechanisms by which tissue Th17 cells mediate these dichotomous functions remain unknown. Here, we characterized the heterogeneity, plasticity, and migratory phenotypes of tissue Th17 cells in vivo by combined fate mapping with profiling of the transcriptomes and TCR clonotypes of over 84,000 Th17 cells at homeostasis and during CNS autoimmune inflammation. Inter- and intra-organ single-cell analyses revealed a homeostatic, stem-like TCF1+ IL-17+ SLAMF6+ population that traffics to the intestine where it is maintained by the microbiota, providing a ready reservoir for the IL-23-driven generation of encephalitogenic GM-CSF+ IFN-γ+ CXCR6+ T cells. Our study defines a direct in vivo relationship between IL-17+ non-pathogenic and GM-CSF+ and IFN-γ+ pathogenic Th17 populations and provides a mechanism by which homeostatic intestinal Th17 cells direct extra-intestinal autoimmune disease.


Assuntos
Autoimunidade , Intestinos/imunologia , Células-Tronco/metabolismo , Células Th17/imunologia , Animais , Movimento Celular , Células Clonais , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Homeostase , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , RNA/metabolismo , RNA-Seq , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR6/metabolismo , Receptores de Interleucina/metabolismo , Reprodutibilidade dos Testes , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Análise de Célula Única , Baço/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479995

RESUMO

Ectopic lymphoid tissue containing B cells forms in the meninges at late stages of human multiple sclerosis (MS) and when neuroinflammation is induced by interleukin (IL)-17 producing T helper (Th17) cells in rodents. B cell differentiation and the subsequent release of class-switched immunoglobulins have been speculated to occur in the meninges, but the exact cellular composition and underlying mechanisms of meningeal-dominated inflammation remain unknown. Here, we performed in-depth characterization of meningeal versus parenchymal Th17-induced rodent neuroinflammation. The most pronounced cellular and transcriptional differences between these compartments was the localization of B cells exhibiting a follicular phenotype exclusively to the meninges. Correspondingly, meningeal but not parenchymal Th17 cells acquired a B cell-supporting phenotype and resided in close contact with B cells. This preferential B cell tropism for the meninges and the formation of meningeal ectopic lymphoid tissue was partially dependent on the expression of the transcription factor Bcl6 in Th17 cells that is required in other T cell lineages to induce isotype class switching in B cells. A function of Bcl6 in Th17 cells was only detected in vivo and was reflected by the induction of B cell-supporting cytokines, the appearance of follicular B cells in the meninges, and of immunoglobulin class switching in the cerebrospinal fluid. We thus identify the induction of a B cell-supporting meningeal microenvironment by Bcl6 in Th17 cells as a mechanism controlling compartment specificity in neuroinflammation.


Assuntos
Doenças Neuroinflamatórias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Células Th17/metabolismo , Animais , Linfócitos B/imunologia , Comunicação Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Centro Germinativo/imunologia , Inflamação/metabolismo , Ativação Linfocitária , Masculino , Meninges/imunologia , Meninges/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/fisiopatologia , Tecido Parenquimatoso/imunologia , Tecido Parenquimatoso/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/fisiologia , Células Th17/imunologia , Células Th17/fisiologia
14.
Neuro Oncol ; 23(4): 586-598, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33175161

RESUMO

BACKGROUND: Medulloblastoma (MB) is a malignant brain tumor in childhood. It comprises 4 subgroups with different clinical behaviors. The aim of this study was to characterize the transcriptomic landscape of MB, both at the level of individual tumors as well as in large patient cohorts. METHODS: We used a combination of single-cell transcriptomics, cell culture models and biophysical methods such as nanoparticle tracking analysis and electron microscopy to investigate intercellular communication in the MB tumor niche. RESULTS: Tumor cells of the sonic hedgehog (SHH)-MB subgroup show a differentiation blockade. These cells undergo extensive metabolic reprogramming. The gene expression profiles of individual tumor cells show a partial convergence with those of tumor-associated glial and immune cells. One possible cause is the transfer of extracellular vesicles (EVs) between cells in the tumor niche. We were able to detect EVs in co-culture models of MB tumor cells and oligodendrocytes. We also identified a gene expression signature, EVS, which shows overlap with the proteome profile of large oncosomes from prostate cancer cells. This signature is also present in MB patient samples. A high EVS expression is one common characteristic of tumors that occur in high-risk patients from different MB subgroups or subtypes. CONCLUSIONS: With EVS, our study uncovered a novel gene expression signature that has a high prognostic significance across MB subgroups.


Assuntos
Neoplasias Cerebelares , Vesículas Extracelulares , Meduloblastoma , Neoplasias Cerebelares/genética , Proteínas Hedgehog/genética , Humanos , Masculino , Meduloblastoma/genética , Transcriptoma
15.
Front Immunol ; 11: 573955, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154752

RESUMO

Patients with chronic anterior uveitis are at particularly high risk of developing secondary glaucoma when corticosteroids [e.g., dexamethasone (Dex)] are used or when inflammatory activity has regressed. Macrophage migration into the eye increases when secondary glaucoma develops and may play an important role in the development of secondary glaucoma. Our aim was to evaluate in vitro if increased hydrostatic pressure and corticosteroids could induce changes in macrophages phenotype. By using a pressure chamber cell culture system, we assessed the effect of increased hydrostatic pressure (HP), inflammation, and immunosuppression (Dex) on the M1/M2 phenotype of macrophages. Bone marrow-derived macrophages (BMDMs) were stimulated with medium, lipopolysaccharide (LPS, 100 ng/ml), Dex (200 ng/ml), or LPS + Dex and incubated with different HP (0, 20, or 60 mmHg) for 2 or 7 days. The numbers of CD86+/CD206- (M1 phenotype), CD86-/CD206+ (M2 phenotype), CD86+/CD206+ (intermediate phenotype), F4/80+/TNF-α+, and F4/80+/IL-10+ macrophages were determined by flow cytometry. TNF-α and IL-10 levels in cell culture supernatants were quantified by ELISA. TNF-α, IL-10, fibronectin, and collagen IV expression in BMDMs were detected by immunofluorescence microscopy. Higher HP polarizes macrophages primarily to an M1 phenotype (LPS, 60 vs. 0 mmHg, d2: p = 0.0034) with less extra cellular matrix (ECM) production and secondary to an M2 phenotype (medium, 60 vs. 0 mmHg, d7: p = 0.0089) (medium, 60 vs. 20 mmHg, d7: p = 0.0433) with enhanced ECM production. Dex induces an M2 phenotype (Dex, medium vs. Dex, d2: p < 0.0001; d7: p < 0.0001) with more ECM production. Higher HP further increased M2 polarization of Dex-treated macrophages (Dex, 60 vs. 0 mmHg, d2: p = 0.0417; d7: p = 0.0454). These changes in the M1/M2 phenotype by high HP or Dex treatment may play a role in the pathogenesis of secondary uveitic glaucoma- or glucocorticoid (GC)-induced glaucoma.


Assuntos
Pressão Hidrostática/efeitos adversos , Macrófagos/imunologia , Animais , Sobrevivência Celular , Células Cultivadas , Colágeno Tipo IV/metabolismo , Dexametasona/farmacologia , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Glaucoma/etiologia , Glaucoma/imunologia , Inflamação , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fenótipo , Fator de Necrose Tumoral alfa/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(17): 9466-9476, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32295886

RESUMO

Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell-cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.


Assuntos
Neurônios/fisiologia , Nervos Periféricos/citologia , Animais , Doenças Autoimunes/metabolismo , Biomarcadores , Comunicação Celular , Linhagem da Célula , Regulação da Expressão Gênica/fisiologia , Homeostase , Humanos , Leucócitos/fisiologia , Macrófagos/fisiologia , Camundongos , Ratos
17.
Acta Neuropathol ; 139(5): 913-936, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31848709

RESUMO

Atypical teratoid/rhabdoid tumors (ATRT) are known for their heterogeneity concerning pathophysiology and outcome. However, predictive factors within distinct subgroups still need to be uncovered. Using multiplex immunofluorescent staining and single-cell RNA sequencing we unraveled distinct compositions of the immunological tumor microenvironment (TME) across ATRT subgroups. CD68+ cells predominantly infiltrate ATRT-SHH and ATRT-MYC and are a negative prognostic factor for patients' survival. Within the murine ATRT-MYC and ATRT-SHH TME, Cd68+ macrophages are core to intercellular communication with tumor cells. In ATRT-MYC distinct tumor cell phenotypes express macrophage marker genes. These cells are involved in the acquisition of chemotherapy resistance in our relapse xenograft mouse model. In conclusion, the tumor cell-macrophage interaction contributes to ATRT-MYC heterogeneity and potentially to tumor recurrence.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Macrófagos/patologia , Recidiva Local de Neoplasia/patologia , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Humanos , Masculino , Camundongos Transgênicos , Tumor Rabdoide/genética
18.
Front Immunol ; 10: 515, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984164

RESUMO

Objective: Utilize immune cell profiles in the cerebrospinal fluid (CSF) to advance the understanding and potentially support the diagnosis of inflammatory neuropathies. Methods: We analyzed CSF cell flow cytometry data of patients with definite Guillain-Barré syndrome (GBS, n = 26) and chronic inflammatory demyelinating polyneuropathy (CIDP, n = 32) based on established diagnostic criteria in comparison to controls with relapsing-remitting multiple sclerosis (RRMS, n = 49) and idiopathic intracranial hypertension (IIH, n = 63). Results: Flow cytometry revealed disease-specific changes of CSF cell composition with a significant increase of NKT cells and CD8+ T cells in CIDP, NK cells in GBS, and B cells and plasma cells in MS in comparison to IIH controls. Principal component analysis demonstrated distinct CSF immune cells pattern in inflammatory neuropathies vs. RRMS. Systematic receiver operator curve (ROC) analysis identified NKT cells as the best parameter to distinguish GBS from CIDP. Composite scores combing several of the CSF parameters differentiated inflammatory neuropathies from IIH and GBS from CIDP with high confidence. Applying a novel dimension reduction technique, we observed an intra-disease heterogeneity of inflammatory neuropathies. Conclusion: Inflammatory neuropathies display disease- and subtype-specific alterations of CSF cell composition. The increase of NKT cells and CD8+ T cells in CIDP and NK cells in GBS, suggests a central role of cytotoxic cell types in inflammatory neuropathies varying between acute and chronic subtypes. Composite scores constructed from multi-dimensional CSF parameters establish potential novel diagnostic tools. Intra-disease heterogeneity suggests distinct disease mechanisms in subgroups of inflammatory neuropathies.


Assuntos
Síndrome de Guillain-Barré/líquido cefalorraquidiano , Células Matadoras Naturais/imunologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/líquido cefalorraquidiano , Linfócitos T/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Citometria de Fluxo , Síndrome de Guillain-Barré/imunologia , Humanos , Inflamação/líquido cefalorraquidiano , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/imunologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/imunologia , Pseudotumor Cerebral/líquido cefalorraquidiano , Pseudotumor Cerebral/imunologia , Adulto Jovem
19.
J Neuroimmunol ; 321: 109-116, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957380

RESUMO

Primary angiitis of the central nervous system (PACNS) is a rare and heterogeneous inflammatory disease of the CNS vasculature with poorly understood pathophysiology. Comprehensive immune-cell phenotyping revealed increased frequencies of leukocytes in the cerebrospinal fluid (CSF) of PACNS patients compared to patients with multiple sclerosis, ischemic stroke, and somatoform disorders (n = 18 per group). Changes in the intrathecal immune-cell profile were heterogeneous in PACNS. While proportions of T-cell subsets remained unaltered, some PACNS patients showed a shift toward NK- or B cells. Intrathecal immunoglobulin synthesis was observed in a subgroup of PACNS patients with an increased frequency of antibody producing plasma cells.


Assuntos
Linfócitos B/imunologia , Imunidade Celular/imunologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Vasculite do Sistema Nervoso Central/sangue , Vasculite do Sistema Nervoso Central/imunologia , Adulto , Idoso , Linfócitos B/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Linfócitos T/metabolismo , Vasculite do Sistema Nervoso Central/diagnóstico
20.
Immunity ; 48(3): 556-569.e7, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29562202

RESUMO

The death receptor Fas removes activated lymphocytes through apoptosis. Previous transcriptional profiling predicted that Fas positively regulates interleukin-17 (IL-17)-producing T helper 17 (Th17) cells. Here, we demonstrate that Fas promoted the generation and stability of Th17 cells and prevented their differentiation into Th1 cells. Mice with T-cell- and Th17-cell-specific deletion of Fas were protected from induced autoimmunity, and Th17 cell differentiation and stability were impaired. Fas-deficient Th17 cells instead developed a Th1-cell-like transcriptional profile, which a new algorithm predicted to depend on STAT1. Experimentally, Fas indeed bound and sequestered STAT1, and Fas deficiency enhanced IL-6-induced STAT1 activation and nuclear translocation, whereas deficiency of STAT1 reversed the transcriptional changes induced by Fas deficiency. Thus, our computational and experimental approach identified Fas as a regulator of the Th17-to-Th1 cell balance by controlling the availability of opposing STAT1 and STAT3 to have a direct impact on autoimmunity.


Assuntos
Diferenciação Celular/imunologia , Fator de Transcrição STAT1/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Receptor fas/metabolismo , Animais , Apoptose/imunologia , Biomarcadores , Caspases/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ativação Linfocitária , Camundongos , Fenótipo , Fosforilação , Ligação Proteica , Transporte Proteico , Fator de Transcrição STAT3/metabolismo , Células Th17/citologia , Transcriptoma , Receptor fas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA