Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 19(8): e202300613, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38334957

RESUMO

The Werner Syndrome RecQ helicase (WRN) is a synthetic lethal target of interest for the treatment of cancers with microsatellite instability (MSI). Different hit finding approaches were initially tested. The identification of WRN inhibitors proved challenging due to a high propensity for artefacts via protein interference, i. e., hits inhibiting WRN enzymatic activities through multiple, unspecific mechanisms. Previously published WRN Helicase inhibitors (ML216, NSC19630 or NSC617145) were characterized in an extensive set of biochemical and biophysical assays and could be ruled out as specific WRN helicase probes. More innovative screening strategies need to be developed for successful drug discovery of non-covalent WRN helicase inhibitors.


Assuntos
DNA Helicases , Tiadiazóis , Ureia , DNA Helicases/metabolismo , Helicase da Síndrome de Werner/metabolismo
2.
Sci Rep ; 12(1): 4984, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322151

RESUMO

The TEAD transcription factors are the most downstream elements of the Hippo pathway. Their transcriptional activity is modulated by different regulator proteins and by the palmitoylation/myristoylation of a specific cysteine residue. In this report, we show that a conserved lysine present in these transcription factors can also be acylated, probably following the intramolecular transfer of the acyl moiety from the cysteine. Using Scalloped (Sd), the Drosophila homolog of human TEAD, as a model, we designed a mutant protein (Glu352GlnSd) that is predominantly acylated on the lysine (Lys350Sd). This protein binds in vitro to the three Sd regulators-Yki, Vg and Tgi-with a similar affinity as the wild type Sd, but it has a significantly higher thermal stability than Sd acylated on the cysteine. This mutant was also introduced in the endogenous locus of the sd gene in Drosophila using CRISPR/Cas9. Homozygous mutants reach adulthood, do not present obvious morphological defects and the mutant protein has both the same level of expression and localization as wild type Sd. This reveals that this mutant protein is both functional and able to control cell growth in a similar fashion as wild type Sd. Therefore, enhancing the lysine acylation of Sd has no detrimental effect on the Hippo pathway. However, we did observe a slight but significant increase of wing size in flies homozygous for the mutant protein suggesting that a higher acylation of the lysine affects the activity of the Hippo pathway. Altogether, our findings indicate that TEAD/Sd can be acylated either on a cysteine or on a lysine, and suggest that these two different forms may have similar properties in cells.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição de Domínio TEA , Animais , Cisteína/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Lisina/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transativadores/metabolismo
3.
Nat Commun ; 12(1): 2442, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903593

RESUMO

The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs. Here we show that protein isoforms originating from the MECOM locus form a complex with PAX8. These include MDS1-EVI1 (also called PRDM3) for which we map its interaction with PAX8 in vitro and in vivo. We show that PAX8 binds a large number of genomic sites and forms transcriptional hubs. At a subset of these, PAX8 together with PRDM3 regulates a specific gene expression module involved in adhesion and extracellular matrix. This gene module correlates with PAX8 and MECOM expression in large scale profiling of cell lines, patient-derived xenografts (PDXs) and clinical cases and stratifies gynecological cancer cases with worse prognosis. PRDM3 is amplified in ovarian cancers and we show that the MECOM locus and PAX8 sustain in vivo tumor growth, further supporting that the identified function of the MECOM locus underlies PAX8-driven oncogenic functions in ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína do Locus do Complexo MDS1 e EVI1/genética , Neoplasias Ovarianas/genética , Fator de Transcrição PAX8/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Proteína do Locus do Complexo MDS1 e EVI1/metabolismo , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fator de Transcrição PAX8/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Protein Sci ; 26(12): 2399-2409, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28960584

RESUMO

The Hippo pathway is deregulated in various cancers, and the discovery of molecules that modulate this pathway may open new therapeutic avenues in oncology. TEA/ATTS domain (TEAD) transcription factors are the most distal elements of the Hippo pathway and their transcriptional activity is regulated by the Yes-associated protein (YAP). Amongst the various possibilities for targeting this pathway, inhibition of the YAP:TEAD interaction is an attractive strategy. It has been shown recently that TEAD proteins are covalently linked via a conserved cysteine to a fatty acid molecule (palmitate) that binds to a deep hydrophobic cavity present in these proteins. This acylation of TEAD seems to be required for efficient binding to YAP, and understanding how it modulates the YAP:TEAD interaction may provide useful information on the regulation of TEAD function. In this report we have studied the effect of TEAD4 acylation on its interaction with YAP and the other co-activator transcriptional co-activator with PDZ-binding motif (TAZ). We show in our biochemical and cellular assays that YAP and TAZ bind in a similar manner to acylated and non-acylated TEAD4. This indicates that TEAD4 acylation is not a prerequisite for its interaction with YAP or TAZ. However, we observed that TEAD4 acylation significantly enhances its stability, suggesting that it may help this transcription factor to acquire and/or maintain its active conformation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Acilação/fisiologia , Humanos , Modelos Moleculares , Transdução de Sinais/fisiologia , Fatores de Transcrição de Domínio TEA , Transativadores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
5.
Elife ; 62017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28430104

RESUMO

TEAD (TEA/ATTS domain) transcription factors are the most distal effectors of the Hippo pathway. YAP (Yes-associated protein) is a coactivator protein which, upon binding to TEAD proteins, stimulates their transcriptional activity. Since the Hippo pathway is deregulated in various cancers, designing inhibitors of the YAP:TEAD interaction is an attractive therapeutic strategy for oncology. Understanding the molecular events that take place at the YAP:TEAD interface is therefore important not only to devise drug discovery approaches, but also to gain knowledge on TEAD regulation. In this report, combining single site-directed mutagenesis and double mutant analyses, we conduct a detailed analysis on the role of several residues located at the YAP:TEAD interface. Our results provide quantitative understanding of the interactions taking place at the YAP:TEAD interface and give insights into the formation of the YAP:TEAD complex and more particularly on the interaction between TEAD and the Ω-loop found in YAP.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Mapas de Interação de Proteínas , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Proteínas Musculares/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfoproteínas/genética , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA