Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597995

RESUMO

The cell-surface receptor tyrosine kinase c-mesenchymal-epithelial transition factor (c-Met) is overexpressed in a wide range of solid tumors, making it an appropriate target antigen for the development of anticancer therapeutics. Various antitumor c-Met-targeting therapies (including monoclonal antibodies [mAbs] and tyrosine kinases) have been developed for the treatment of c-Met-overexpressing tumors, most of which have so far failed to enter the clinic because of their efficacy and complications. Antibody-drug conjugates (ADCs), a new emerging class of cancer therapeutic agents that harness the target specificity of mAbs to deliver highly potent small molecules to the tumor with the minimal damage to normal cells, could be an attractive therapeutic approach to circumvent these limitations in patients with c-Met-overexpressing tumors. Of great note, there are currently nine c-Met-targeting ADCs being examined in different phases of clinical studies as well as eight preclinical studies for treating various solid tumors. The purpose of this study is to present a broad overview of clinical- and preclinical-stage c-Met-targeting ADCs.

2.
Sci Rep ; 14(1): 7527, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553531

RESUMO

Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers and accounts for a significant proportion of cancer-associated deaths worldwide. This disease, marked by multifaceted etiology, often poses diagnostic challenges. Finding a reliable and non-invasive diagnostic method seems to be necessary. In this study, we analyzed the gene expression profiles of 20 HCC patients, 12 individuals with chronic hepatitis, and 15 healthy controls. Enrichment analysis revealed that platelet aggregation, secretory granule lumen, and G-protein-coupled purinergic nucleotide receptor activity were common biological processes, cellular components, and molecular function in HCC and chronic hepatitis B (CHB) compared to healthy controls, respectively. Furthermore, pathway analysis demonstrated that "estrogen response" was involved in the pathogenesis of HCC and CHB conditions, while, "apoptosis" and "coagulation" pathways were specific for HCC. Employing computational feature selection and logistic regression classification, we identified candidate genes pivotal for diagnostic panel development and evaluated the performance of these panels. Subsequent machine learning evaluations assessed these panels' performance in an independent cohort. Remarkably, a 3-marker panel, comprising RANSE2, TNF-α, and MAP3K7, demonstrated the best performance in qRT-PCR-validated experimental data, achieving 98.4% accuracy and an area under the curve of 1. Our findings highlight this panel's promising potential as a non-invasive approach not only for detecting HCC but also for distinguishing HCC from CHB patients.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Leucócitos Mononucleares/metabolismo , Biomarcadores/metabolismo , Transcriptoma , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Hepatite B Crônica/diagnóstico , Biomarcadores Tumorais/metabolismo , Vírus da Hepatite B/genética
3.
Life Sci ; 319: 121506, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858311

RESUMO

Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.


Assuntos
COVID-19 , Gastroenteropatias , Humanos , COVID-19/genética , SARS-CoV-2 , Intestinos , Organoides , Mucosa Intestinal
4.
Mol Ther ; 31(7): 1874-1903, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950736

RESUMO

Antibody-drug conjugates (ADCs) are a promising class of cancer biopharmaceuticals that exploit the specificity of a monoclonal antibody (mAb) to selectively deliver highly cytotoxic small molecules to targeted cancer cells, leading to an enhanced therapeutic index through increased antitumor activity and decreased off-target toxicity. ADCs hold great promise for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after the approval and tremendous success of trastuzumab emtansine and trastuzumab deruxtecan, representing a turning point in both HER2-positive breast cancer treatment and ADC technology. Additionally and importantly, a total of 29 ADC candidates are now being investigated in different stages of clinical development for the treatment of HER2-positive breast cancer. The purpose of this review is to provide an insight into the ADC field in cancer treatment and present a comprehensive overview of ADCs approved or under clinical investigation for the treatment of HER2-positive breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Antineoplásicos/uso terapêutico , Ado-Trastuzumab Emtansina/uso terapêutico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico
5.
Exp Biol Med (Maywood) ; 248(8): 665-676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775873

RESUMO

Despite the extensive body of research, understanding the exact molecular mechanisms governing inflammatory bowel diseases (IBDs) still demands further investigation. Transforming growth factor-ß1 (TGF-ß1) signaling possesses a multifacial effect on a broad range of context-dependent cellular responses. However, long-term TGF-ß1 activity may trigger epithelial-mesenchymal transition (EMT), followed by fibrosis. This study aimed to determine the role of epithelial TGF-ß1 signaling in inflammatory bowel disease (IBD) pathogenesis. The expression of TGF-ß1 signaling components and EMT-related and epithelial tight junction markers was examined in IBD patients (n = 60) as well as LPS-induced Caco-2/RAW264.7 co-culture model using quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence staining. Furthermore, the effect of A83-01, as a TGF-ß receptor I (TßRI) inhibitor, on the inflamed epithelial cells was evaluated in vitro. To evaluate the cytotoxic effects of the TßRI inhibitor, a cell viability assay was performed by the MTS method. Considering the activation of canonical and non-canonical TGF-ß1 signaling pathways in IBD patients, expression results indicated that administering A83-01 in inflamed Caco-2 cells substantially blocked the expression level of TGF-ß1, SMAD4, and PI3K and the phosphorylation of p-SMAD2/3, p-AKT, and p-RPS6 as well as prevented downregulation of LncGAS5 and LncCDKN2B. Further analysis revealed that the inhibition of TGF-ß1 signaling in inflamed epithelial cells by the small molecule could suppress the EMT-related markers as well as improve the expression of epithelial adherens and tight junctions. Collectively, these findings indicated that the inhibition of the TGF-ß1 signaling could suppress the induction of EMT in inflamed epithelial cells as well as exert a protective effect on preserving tight junction integrity. There is a pressing need to determine the exact cellular mechanisms by which TGF-ß1 exerts its effect on IBD pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Células CACO-2 , Células Epiteliais/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
6.
Cell Biol Int ; 47(5): 969-980, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36655489

RESUMO

The activation of hepatic stellate cells is the primary function of facilitating liver fibrosis. Interfering with the coordinators of different signaling pathways in activated hepatic stellate cells (aHSCs) could be a potential approach in ameliorating liver fibrosis. Regarding the illustrated anti-fibrotic effect of imatinib in liver fibrosis, we investigated the imatinib's potential role in inhibiting HSC activation through miR-124 and its interference with the STAT3/hepatic leukemia factor (HLF)/IL-6 circuit. The anti-fibrotic effect of imatinib was investigated in the LX-2 cell line and carbon tetrachloride (CCl4 )-induced Sprague-Dawley rat. The expression of IL-6, STAT3, HLF, miR-124, and α-smooth muscle actin (α-SMA) were quantified by quantitative real-time PCR (qRT-PCR) and the protein level of α-SMA and STAT3 was measured by western blot analysis both in vitro and in vivo. The LX-2 cells were subjected to immunocytochemistry (ICC) for α-SMA expression. After administering imatinib in the liver fibrosis model, histopathological examinations were done, and hepatic function serum markers were checked. Imatinib administration alleviated mentioned liver fibrosis markers. The expression of miR-124 was downregulated, while IL-6/HLF/STAT3 circuit agents were upregulated in vitro and in vivo. Notably, imatinib intervention decreased the expression of IL-6, STAT3, and HLF. Elevated expression of miR-124 suppressed the expression of STAT3 and further inhibited HSCs activation. Our results demonstrated that imatinib not only ameliorated hepatic fibrosis through tyrosine kinase inhibitor (TKI) activity but also interfered with the miR-124 and STAT3/HLF/IL-6 pathway. Considering the important role of miR-124 in regulating liver fibrosis and HSCs activation, imatinib may exert its anti-fibrotic activity through miR-124.


Assuntos
Interleucina-6 , MicroRNAs , Ratos , Animais , Mesilato de Imatinib/farmacologia , Interleucina-6/metabolismo , Células Estreladas do Fígado/metabolismo , Ratos Sprague-Dawley , MicroRNAs/metabolismo , Cirrose Hepática/patologia , Tetracloreto de Carbono
7.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194903, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36538966

RESUMO

BACKGROUND: Efficient differentiation of mesenchymal stem cells (MSCs) into a desired cell lineage remains challenging in cell-based therapy and regenerative medicine. Numerous efforts have been made to efficiently promote differentiation of MSCs into osteoblast lineage. Accordingly, epigenetic signatures emerge as a key conductor of cell differentiation. Among them, Enhancer of Zeste Homolog 2 (EZH2), a histone methyltransferase appears to suppress osteogenesis. Curcumin is an osteoinductive natural polyphenol compound which supposedly modulates epigenetic mechanisms. Hence, the current study aims to address the role of the EZH2 epigenetic factor in osteogenic activity of MSCs after Curcumin treatment. METHODS: The effect of Curcumin on viability and osteogenic differentiation was evaluated at different time points in vitro. The expression level of EZH2 was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) after 14 and 21 days. RESULTS: MTT results showed no cytotoxic effects at concentrations of 10 and 15 µM of Curcumin and cells survived up to 70 % at all time-points. qRT-PCR results demonstrated that Curcumin significantly enhanced the expression levels of osteogenic markers that included Runx2, Osterix, Collagen type I, Osteopontin and Osteocalcin at day 21. CONCLUSIONS: Interestingly, we observed that the expression level of the EZH2 gene was downregulated in the presence of Curcumin compared to the control group during osteogenesis. This study confirmed that Curcumin acts as an epigenetic switch to regulate osteoblast differentiation specifically through the EZH2 suppression.


Assuntos
Curcumina , Células-Tronco Mesenquimais , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Osteogênese/genética , Curcumina/farmacologia , Curcumina/metabolismo , Histona Metiltransferases/metabolismo , Diferenciação Celular/genética , Epigênese Genética
8.
Cell Biosci ; 12(1): 4, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983649

RESUMO

Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male­specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.

9.
Expert Rev Mol Diagn ; 21(9): 939-962, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34308738

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED: The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION: In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Gastroenteropatias , Biomarcadores , Gastroenteropatias/diagnóstico , Humanos
10.
Cell Mol Life Sci ; 78(2): 469-495, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32710154

RESUMO

Stem cells and their derivatives are novel pharmaceutics that have the potential for use as tissue replacement therapies. However, the heterogeneous characteristics of stem cell cultures have hindered their biomedical applications. In theory and practice, when cell type-specific or stage-specific cell surface proteins are targeted by unique antibodies, they become highly efficient in detecting and isolating specific cell populations. There is a growing demand to identify reliable and actionable cell surface markers that facilitate purification of particular cell types at specific developmental stages for use in research and clinical applications. The identification of these markers as very important members of plasma membrane proteins, ion channels, transporters, and signaling molecules has directly benefited from proteomics and tools for proteomics-derived data analyses. Here, we review the methodologies that have played a role in the discovery of cell surface markers and introduce cutting edge single cell proteomics as an advanced tool. We also discuss currently available specific cell surface markers for stem cells and their lineages, with emphasis on the nervous system, heart, pancreas, and liver. The remaining gaps that pertain to the discovery of these markers and how single cell proteomics and identification of surface markers associated with the progenitor stages of certain terminally differentiated cells may pave the way for their use in regenerative medicine are also discussed.


Assuntos
Proteínas de Membrana/análise , Proteômica/métodos , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Transplante de Células-Tronco , Células-Tronco/química
11.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198323

RESUMO

Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/metabolismo , Proteômica/métodos , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Oncologia/tendências , Camundongos , Mutação , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Prognóstico , Proteoma , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Resultado do Tratamento
12.
Daru ; 28(2): 533-543, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32607956

RESUMO

PURPOSE: Angiogenesis related abnormalities underlie several life-threatening disorders. Despite approved therapies, scientists have yet to develop highly efficient, low cost approaches with minimal side effects. METHODS: We evaluated the antiangiogenic activity of 50% hydroalcoholic extracts of Pergularia tomentosa L. root and aerial parts along with their EtOAc and water fractions, in vivo and in vitro. Transgenic zebrafish line Tg(fli1:EGFP) was used for in vivo assay and human umbilical vein endothelial cell (HUVEC) migration test along with possibility of tube formation were performed as in vitro tests. Furthermore, microvasculature in chicken chorioallantoic membrane (CAM) was assessed under P. tomentosa treatment. The fractionation of the 50% hydroalcoholic extracts was led to the identification of the best active fraction in this study. The metabolite profiling of the active fraction was also carried out using LC-HRESIMS analysis. RESULTS: Pergularia tomentosa markedly inhibited intersegmental vessel (ISV) formation at 48 h post-fertilization (hpf) embryos in zebrafish. The water fraction of root hydroalcoholic extract (PtR2), showed strong antiangiogenic effect with minimal adverse viability impacts. Over 80% of embryos showed more than 50% inhibition in their ISV development at 20 and 40 µg/mL. PtR2 at 20 µg/mL substantially reduced human umbilical vein endothelial cell (HUVEC) migration up to 40%, considerable destruction of the formed tubes in the tube formation and microvasculature in CAM assays. Immunocytochemistry showed a marked reduction in vascular endothelial cadherin (VE-cadherin) abundance at cell junctions concurrent with substantial reduction of phospho-Akt (p-Akt) and ß-catenin protein expressions. Phytochemical profile of PtR2 showed a rich source of cardenolide structures, including ghalakinoside, calactin and calotropin derivatives. CONCLUSION: Thus, the P. tomentosa cardenolide-rich fraction (PtR2) may hold a considerable promise for an antiangiogenic impact by impairment of endothelial cell (EC) migration and viability. Graphical abstract.


Assuntos
Inibidores da Angiogênese/farmacologia , Cardenolídeos/farmacologia , Embrião não Mamífero/efeitos dos fármacos , Magnoliopsida/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Animais Geneticamente Modificados , Caderinas/metabolismo , Cardenolídeos/química , Cardenolídeos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Embrião não Mamífero/irrigação sanguínea , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Metabolômica/métodos , Componentes Aéreos da Planta/química , Raízes de Plantas/química , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA