Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 11: 557614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262783

RESUMO

PPP1R14B-AS1 is an antisense long non-coding RNA with unknown functions. Herein, gene differential analyses were performed using the data of patients with liver cancer and lung adenocarcinoma (LUAD) from The Cancer Genome Atlas database. PPP1R14B-AS1 was found to be upregulated and also overexpressed in 10 other types of cancers. In addition, PPP1R14B-AS1 overexpression was associated with poor overall prognosis in eight cancers. Furthermore, PPPAR14B-AS1 upregulation was positively associated with worsening development of liver and LUAD cancers and related to poor disease-free survival. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses suggested that PPP1R14B-AS1 strongly participated in regulating cell aerobic respiration processes, such as mitochondrial electron respiration chain and NADH dehydrogenation processes. Cell cytoplasmic and nuclear RNA purification assessment results revealed that PPP1R14B-AS existed in the cell nucleus and cytoplasm. The knockdown of PPP1R14B-AS1 in HepG2 and A549 cells using PPP1R14B-AS1-specific siRNAs decreased mitochondrial respiration as demonstrated by the reduction in basal respiration and ATP production. Moreover, PPP1R14B-AS1 downregulation did not obviously affect cell glycolysis ability. Finally, PPP1R14B-AS1 inhibition inhibited HepG2 and A549 cell migration and proliferation. In summary, our study found for the first time that PPP1R14B-AS1 could be a potential biomarker for cancer diagnosis and that PPP1R14B-AS1 inhibition could be a potentially effective therapy.

2.
Genome Biol Evol ; 11(11): 3252-3255, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670768

RESUMO

Chitinases possess an extraordinary ability to directly hydrolyze highly insoluble chitin polymers to low-molecular-weight chito-oligomers, which possess particular biological functions, such as elicitor action and antitumor activity. A novel strain, Paenibacillus xylanilyticus W4, which was isolated from soil, showed strong chitin degradation activity. Here, we first reported the complete genome information of P. xylanilyticus. Paenibacillus xylanilyticus W4 contains a 5,532,141 bp single circular chromosome with 47.33% GC content. The genome contains 5,996 genes, including 39 rRNA- and 109 tRNA-coding genes. Phylogenetic analysis and Genome-to-Genome Distance revealed its taxonomic characterization into a separate family. Six glycoside hydrolase 18 (GH18) and 2 GH23 enzymes involved in chitin degradation. Although many of the chitinases were conserved in Paenibacillus, several GH18 chitinases share high similarity with Bacillus circulans. The genome information provided here could benefit for understanding the chitin-degrading properties of P. xylanilyticus as well as its potential application in biotechnological and pharmaceutical fields.


Assuntos
Quitinases/genética , Genoma Bacteriano , Paenibacillus/genética , Filogenia , Quitina/metabolismo , Sequenciamento Completo do Genoma
3.
Sheng Wu Gong Cheng Xue Bao ; 35(6): 1109-1116, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31232007

RESUMO

The discovery of hydroxylases in the anticancer drug taxol biosynthesis pathway is a hotspot and difficulty in current research. In this study, a new hydroxylase gene TcCYP725A22 (GenBank accession number: MF448646.1) was used to construct a sub-cellular localization vector pCAMIBA1303-TcCYP725A22-EGFP to get the transient expression in onion epidermal cells. Laser confocal microscopy revealed that the protein encoded by this gene was localized in the cell membrane. Furthermore, the recombinant plant expression plasmid pBI121-TcCYP725A22 was constructed. After transient transformation to the Taxus chinensis mediated by Agrobacterium tumefaciens LBA4404, qRT-PCR and LC-MS were utilized to analyze the effects of TcCYP725A22 overexpression on the synthesis of taxol. The results showed that, in the TcCYP725A22 overexpressed cell line, expression levels of most defined hydroxylase genes for taxol biosynthesis were increased, and the yield of taxanes were also increased. It was concluded that the hydroxylase gene TcCYP725A22 is likely involved in the biosynthetic pathway of taxol.


Assuntos
Taxus , Vias Biossintéticas , Oxigenases de Função Mista , Paclitaxel , Taxoides
4.
Appl Microbiol Biotechnol ; 89(6): 1851-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21120468

RESUMO

An endo-ß-1,4-xylanase gene, designated xyn10G5, was cloned from Phialophora sp. G5 and expressed in Pichia pastoris. The 1,197-bp full-length gene encodes a polypeptide of 399 amino acids consisting of a putative signal peptide at residues 1-20, a family 10 glycoside hydrolase domain, a short Gly/Thr-rich linker and a family 1 carbohydrate-binding module (CBM). The deduced amino acid sequence of XYN10G5 shares the highest identity (53.4%) with a putative xylanase precursor from Aspergillus terreus NIH2624. The purified recombinant XYN10G5 exhibited the optimal activity at pH 4.0 and 70 °C, remained stable at pH 3.0-9.0 (>70% of the maximal activity), and was highly thermostable at 70 °C (retaining ~90% of the initial activity for 1 h). Substrate specificity studies have shown that XYN10G5 had the highest activity on soluble wheat arabinoxylan (350.6 U mg(-1)), and moderate activity to various heteroxylans, and low activity on different types of cellulosic substrates. Under simulated gastric conditions, XYN10G5 was stable and released more reducing sugars from soluble wheat arabinoxylan; when combined with a glucanase (CelA4), the viscosity of barley-soybean feed was significantly reduced. These favorable enzymatic properties make XYN10G5 a good candidate for application in the animal feed industry.


Assuntos
Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Phialophora/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA