Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Medicine (Baltimore) ; 101(47): e31610, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36451490

RESUMO

The gene cell migration inducing hyaluronidase 1 (CEMIP) is on chromosome 15q25 and codes for a 150-kDa protein with an N-terminal secretion signal, a G8 domain, 2 GG domains, and several repeats. It was first described as a specific protein in the inner ear relating to nonsyndromic hearing loss. Recently, increasing research detected its association in various cancers, determining the progression, metastasis, and prognosis by influencing the proliferation and invasion of the cells. This relation is accomplished through various interacting pathways, such as the Wnt/ß-catenin signaling pathway and the epidermal growth factor receptor signaling pathway. Thus, CEMIP could be a novel and potential focus for tumor diagnosis and treatment, but further studies on the regulatory role of CEMIP in vivo and in vitro are still needed. Herein, we summarize the process in recent studies of CEMIP, especially in cancer research.


Assuntos
Hialuronoglucosaminidase , Via de Sinalização Wnt , Humanos , Movimento Celular
2.
Nutrients ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565658

RESUMO

The cytosolic PNGase (peptide:N-glycanase), also known as peptide-N4-(N-acetyl-ß-glucosaminyl)-asparagine amidase, is a well-conserved deglycosylation enzyme (EC 3.5.1.52) which catalyzes the non-lysosomal hydrolysis of an N(4)-(acetyl-ß-d-glucosaminyl) asparagine residue (Asn, N) into a N-acetyl-ß-d-glucosaminyl-amine and a peptide containing an aspartate residue (Asp, D). This enzyme (NGLY1) plays an essential role in the clearance of misfolded or unassembled glycoproteins through a process named ER-associated degradation (ERAD). Accumulating evidence also points out that NGLY1 deficiency can cause an autosomal recessive (AR) human genetic disorder associated with abnormal development and congenital disorder of deglycosylation. In addition, the loss of NGLY1 can affect multiple cellular pathways, including but not limited to NFE2L1 pathway, Creb1/Atf1-AQP pathway, BMP pathway, AMPK pathway, and SLC12A2 ion transporter, which might be the underlying reasons for a constellation of clinical phenotypes of NGLY1 deficiency. The current comprehensive review uncovers the NGLY1'ssdetailed structure and its important roles for participation in ERAD, involvement in CDDG and potential treatment for NGLY1 deficiency.


Assuntos
Asparagina , Defeitos Congênitos da Glicosilação , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Defeitos Congênitos da Glicosilação/genética , Humanos , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeos/metabolismo , Membro 2 da Família 12 de Carreador de Soluto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA