Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 418, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37919282

RESUMO

Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.


Assuntos
Nanopartículas Metálicas , Nanotubos de Carbono , Neoplasias , Humanos , Ouro/uso terapêutico , Inteligência Artificial , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos
2.
J Nanobiotechnology ; 21(1): 263, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37559085

RESUMO

Oral administration is preferred over other drug delivery methods due to its safety, high patient compliance, ease of ingestion without discomfort, and tolerance of a wide range of medications. However, oral drug delivery is limited by the poor oral bioavailability of many drugs, caused by extreme conditions and absorption challenges in the gastrointestinal tract. This review thoroughly discusses the targeted drug vehicles to the intestinal lymphatic system (ILS). It explores the structure and physiological barriers of the ILS, highlighting its significance in dietary lipid and medication absorption and transport. The review presents various approaches to targeting the ILS using spatially precise vehicles, aiming to enhance bioavailability, achieve targeted delivery, and reduce first-pass metabolism with serve in clinic. Furthermore, the review outlines several methods for leveraging these vehicles to open the ILS window, paving the way for potential clinical applications in cancer treatment and oral vaccine delivery. By focusing on targeted drug vehicles to the ILS, this article emphasizes the critical role of these strategies in improving therapeutic efficacy and patient outcomes. Overall, this article emphasizes the critical role of targeted drug vehicles to the ILS and the potential impact of these strategies on improving therapeutic efficacy and patient outcomes.


Assuntos
Trato Gastrointestinal , Sistema Linfático , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Disponibilidade Biológica , Administração Oral
3.
J Nanobiotechnology ; 21(1): 32, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707835

RESUMO

Although some tumor has become a curable disease for many patients, involvement of the central nervous system (CNS) is still a major concern. The blood-brain barrier (BBB), a special structure in the CNS, protects the brain from bloodborne pathogens via its excellent barrier properties and hinders new drug development for brain tumor. Recent breakthroughs in nanotechnology have resulted in various nanovehicless (NPs) as drug carriers to cross the BBB by different strategys. Here, the complex compositions and special characteristics of causes of brain tumor formation and BBB are elucidated exhaustively. Additionally, versatile drug nanovehicles with their recent applications and their pathways on different drug delivery strategies to overcome the BBB obstacle for anti-brain tumor are briefly discussed. Customizing nanoparticles for brain tumor treatments is proposed to improve the efficacy of brain tumor treatments via drug delivery from the gut to the brain. This review provides a broad perspective on customizing delivery nano-vehicles characteristics facilitate drug distribution across the brain and pave the way for the creation of innovative nanotechnology-based nanomaterials for brain tumor treatments.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Humanos , Encéfalo/fisiologia , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo
4.
ACS Nano ; 16(8): 12403-12414, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35920682

RESUMO

The in situ transformation of low-toxicity precursors into a chemotherapeutic agent at a tumor site to enhance the efficacy of its treatment has long been an elusive goal. In this work, a zinc-based zeolitic imidazolate framework that incorporates pharmaceutically acceptable precursors is prepared as a nanoreactor (NR) system for the localized synthesis of an antitumor drug. The as-prepared NRs are administered intratumorally in a tumor-bearing mouse model and then irradiated with ultrasound (US) to activate the chemical synthesis. The US promotes the penetration of the administered NRs into the tumor tissue to cover the lesion entirely, although some NRs leak into the surrounding normal tissue. Nevertheless, only the tumor tissue, where the H2O2 concentration is high, is adequately exposed to the as-synthesized antitumor drug, which markedly impedes development of the tumor. No significant chemical synthesis is detected in the surrounding normal tissue, where the local H2O2 concentration is negligible and the US irradiation is not directly applied. The as-proposed tumor-specific in situ synthesis of therapeutic molecules induces hardly any significant in vivo toxicity and, thus, is potentially a potent biocompatible approach to precision chemotherapy.


Assuntos
Antineoplásicos , Neoplasias , Zeolitas , Camundongos , Animais , Portadores de Fármacos/química , Peróxido de Hidrogênio/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Zeolitas/química , Nanotecnologia
6.
Adv Mater ; 33(34): e2100701, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34270814

RESUMO

Most orally administered drugs fail to reach the intracerebral regions because of the intestinal epithelial barrier (IEB) and the blood-brain barrier (BBB), which are located between the gut and the brain. Herein, an oral prodrug delivery system that can overcome both the IEB and the BBB noninvasively is developed for treating gliomas. The prodrug is prepared by conjugating an anticancer drug on ß-glucans using a disulfide-containing linker. Following oral administration in glioma-bearing mice, the as-prepared prodrug can specifically target intestinal M cells, transpass the IEB, and be phagocytosed/hitchhiked by local macrophages (Mϕ). The Mϕ-hitchhiked prodrug is transported to the circulatory system via the lymphatic system, crossing the BBB. The tumor-overexpressed glutathione then cleaves the disulfide bond within the prodrug, releasing the active drug, improving its therapeutic efficacy. These findings reveal that the developed prodrug may serve as a gut-to-brain oral drug delivery platform for the well-targeted treatment of gliomas.


Assuntos
Administração Oral , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Intestinos/efeitos dos fármacos , Pró-Fármacos/química , Temozolomida/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Dissulfetos , Endocitose , Sistema Linfático , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Transplante de Neoplasias , Temozolomida/farmacocinética , beta-Glucanas/química
7.
Biomaterials ; 255: 120157, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535305

RESUMO

The therapeutic outcome of pancreatic cancer remains unsatisfactory, despite many attempts to improve it. To address this challenge, an oral drug delivery system that spontaneously initiates an effervescent reaction to form gas-bubble carriers is proposed. These carriers concurrently deliver lipophilic paclitaxel (PTX) and hydrophilic gemcitabine (GEM) in the small intestine. The bursting of the bubbles promotes the intestinal absorption of the drugs. The antitumor efficacy of this proposed oral drug delivery system is evaluated in rats with experimentally created orthotopic pancreatic tumors. The combined administration of equivalent amounts of PTX and GEM via the intravenous (i.v.) route, which is clinically used for treating pancreatic cancer, serves as a control. Following oral administration, the lipophilic PTX is initially absorbed through the intestinal lymphatic system and then enters systemic circulation, whereas the hydrophilic GEM is directly taken up into the blood circulation, ultimately accumulating in the tumorous pancreatic tissues. A pharmacokinetic study reveals that the orally delivered formulation has none of the toxic side-effects that are associated with the i.v. injected formulation; changes the pharmacokinetic profiles of the drugs; and increases the bioavailability of PTX. The oral formulation has a greater impact than the i.v. formulation on tumor-specific stromal depletion, resulting in greater inhibition of tumor growth with no evidence of metastatic spread. As well as enhancing the therapeutic efficacy, this unique approach of oral chemotherapy has potential for use on outpatients, greatly improving their quality of life.


Assuntos
Neoplasias Pancreáticas , Qualidade de Vida , Administração Oral , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA