Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Biotechnol ; 34(7): 2120-2131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35649414

RESUMO

AGPAT6 plays a crucial role in the triglyceride (TG) synthesis pathway in mammals. However, its roles in buffalo lactation remain unknown. Therefore, we investigated the functional roles of AGPAT6 in milk fat synthesis by transfecting overexpression and lentivirus interference vectors in buffalo mammary epithelial cells (BuMECs) in vitro. AGPAT6 overexpression in BuMECs significantly enhanced the mRNA expression of FABP4, SLC27A6, ACSL1, DGAT1, DGAT2, LPIN1, INSIG1, CEBPA and SREBF1 genes, and significantly reduced that of XDH, CPT1A, LIPE, INSIG2 and PPARGC1A, but has no significant influence to the mRNA abundance of FABP3, GPAM, PPARG and SREBF2. However, the interference with AGPAT6, the mRNA expression of FABP4, SLC27A6, ACSL1, DGAT1, DGAT2, INSIG1, CEBPA, SREBF1, XDH, CPT1A, LIPE, INSIG2 and PPARGC1A genes in BuMECs changed contrary to the overexpression experiment, and that of GPAM, PPARG and SREBF2 also did not change significantly, but the expression of FABP3 was significantly decreased. In addition, the overexpression/interference of AGPAT6 gene significantly increased/decreased TG content in BuMECs. The results here indicate that AGPAT6 gene is involved in TG synthesis in BuMECs, and affects the expression of major genes associated with FA transport and activation, TG synthesis and transcription regulation, FA oxidation and TG degradation during the lipogenesis of milk.


Assuntos
Búfalos , Leite , Feminino , Animais , Leite/metabolismo , Búfalos/genética , Búfalos/metabolismo , Ácidos Graxos , PPAR gama/metabolismo , Glândulas Mamárias Animais/metabolismo , Lactação/genética , Triglicerídeos/metabolismo , Células Epiteliais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Sci Rep ; 12(1): 2390, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149744

RESUMO

Studies on 3T3-L1 cells and HepG2 hepatocytes have shown that phosphatidic acid phosphohydrolase1 (LPIN1) plays a key role in adipogenesis, acting as a co-activator of peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1a) to regulate fatty acid metabolism. However, the functional role and regulatory mechanism of LPIN1 gene in milk fat synthesis of buffalo are still unknown. In this study, overexpression of buffalo LPIN1 gene transfected with recombinant fusion expression vector significantly increased the expression of AGPAT6, DGAT1, DGAT2, GPAM and BTN1A1 genes involved in triglyceride (TAG) synthesis and secretion, as well as PPARG and SREBF1 genes regulating fatty acid metabolism in the buffalo mammary epithelial cells (BMECs), while the lentivirus-mediated knockdown of buffalo LPIN1 dramatically decreased the relative mRNA abundance of these genes. Correspondingly, total cellular TAG content in the BMECs increased significantly after LPIN1 overexpression, but decreased significantly after LPIN1 knockdown. In addition, the overexpression or knockdown of PPARG also enhanced or reduced the expression of LPIN1 and the transcriptional activity of its promoter. The core region of buffalo LPIN1 promoter spans from - 666 bp to + 42 bp, and two PPAR response elements (PPREs: PPRE1 and PPRE2) were identified in this region. Site mutagenesis analysis showed that PPARG directly regulated the transcription of buffalo LPIN1 by binding to the PPRE1 and PPRE2 on its core promoter. The results here reveal that the LPIN1 gene is involved in the milk fat synthesis of BMECs, and one of the important pathways is to participate in this process through direct transcriptional regulation of PPARG, which in turn significantly affects the content of TAG in BMECs.


Assuntos
Búfalos/metabolismo , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , PPAR gama/metabolismo , Fosfatidato Fosfatase/genética , Triglicerídeos/biossíntese , Animais , Búfalos/genética , Feminino , Regulação da Expressão Gênica , Leite/metabolismo , PPAR gama/genética , Fosfatidato Fosfatase/metabolismo , Transcrição Gênica
3.
J Anim Physiol Anim Nutr (Berl) ; 106(1): 1-11, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33742447

RESUMO

Recent studies have shown elongase of very-long-chain fatty acids 6 (ELOVL6) is a vital protein for endogenous synthesis of saturated and monounsaturated long-chain fatty acids in some mammals. Nevertheless, its role in lipid synthesis in buffalo mammary gland is still unclear. In this work, the full-length coding sequence (CDS) of ELOVL6 was cloned and identified from buffalo mammary gland. As a result, the CDS of this gene is 795 bp, which encodes a polypeptide of 264 amino acid residues. The buffalo ELOVL6 contains an ELO domain which belongs to the ELO superfamily. Among the 10 tissues of buffalo in peak lactation detected by RT-qPCR, the expression level of ELOVL6 was the highest in the brain, followed by the spleen, and then decreased in the mammary gland, muscle, kidney, heart, liver, rumen, intestine and lung. However, only the expression in the brain and spleen was statistically different from that in other tissues (p < 0.05). Compared with that of the dry-off period, the mRNA abundance of ELOVL6 in the mammary gland was significantly increased in peak lactation. The experiments based on lentivirus transfection in buffalo mammary epithelial cells (BuMECs) displayed that the overexpression of ELOVL6 markedly promoted the expression of INSIG1, INSIG2, SREBP, PPARG, FASN, GPAM, DGAT2 and APGAT6 genes, and the knockdown of ELOVL6 significantly decreased the mRNA abundance of INSIG2, SREBP, FASN, SCD, GPAM, APGAT6 and TIP47 genes. In addition, the increase or decrease of ELOVL6 expression level also caused the corresponding change of total triglyceride content in the BuMECs. The results here suggest that the ELOVL6 can catalyse the synthesis of long-chain fatty acids in the BuMECs, and it can indirectly affect the expression of genes related to milk fat synthesis through its catalytic products to promote the lipid biosynthesis of BuMECs.


Assuntos
Búfalos , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Glândulas Mamárias Animais , Animais , Células Epiteliais , Feminino , Lactação , Leite
4.
J Dairy Sci ; 104(12): 12980-12993, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34593221

RESUMO

Liver X receptor α (LXRα; NR1H3) is an important transcription factor that can facilitate milk fat synthesis by regulating the transcription of FASN in mice and goats. Nevertheless, the lipid synthesis related to LXRα and its regulation on FASN in the buffalo mammary gland remain elusive. Here, we demonstrated that the mRNA and protein expression of LXRα in buffalo mammary tissue increased in lactation compared with that in the dry-off period. Overexpression of NR1H3 enhanced the lipid droplet formation and triacylglycerol concentration in buffalo mammary epithelial cells (BuMEC), whereas the knockdown of NR1H3 resulted in a decrease in the number of lipid droplets. At the same time, NR1H3 also affected the expression of regulatory factors (INSIG1, INSIG2, SREBF1, and PPARG) related to milk fat synthesis and that of genes involved in de novo synthesis (FASN, ACACA, and SCD), and uptake and transport (LPL, CD36, and FABP3) of fatty acids as well as triacylglycerol synthesis (GPAM, APGAT6, and DGAT1). Luciferase reporter assays indicated that overexpression of NR1H3 resulted in an increase in the activity of FASN promoter, whereas the knockdown of NR1H3 had an opposite effect. When NR1H3 was overexpressed, mutations in LXRE or SRE could decrease the promoter activity of FASN. Furthermore, mutagenesis of both LXRE and SRE within the FASN promoter completely eliminated the induced activity of LXRα. Our results reveal that buffalo LXRα promotes milk fat synthesis through regulating the expression of FASN by directly interacting with FASN promoter and affecting the SREBF1 expression. This study underscores a crucial role of LXRα in regulating lipid synthesis of the buffalo mammary gland.


Assuntos
Receptores X do Fígado , Glândulas Mamárias Animais , Leite , Animais , Búfalos , Células Epiteliais , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Feminino , Lactação , Lipogênese/genética , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo
5.
Anim Sci J ; 92(1): e13537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682250

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) is a critical transcription factor regulating lipid and glucose metabolism. However, the regulatory effect of PPARγ on milk fat synthesis in buffalo mammary gland is not clear. In order to explore the role of buffalo PPARG gene in milk fat synthesis, lentivirus-mediated interference was used to knock it down and then the recombinant fusion expression vector was transfected into buffalo mammary epithelial cell (BMEC) to overexpress it. PPARG gene knockdown significantly decreased the expression of CD36, FABP3, FABP4, ACSS2, ELOVL6, DGAT2, BTN1A1, AGPAT6, LPIN1, ABCG2, PPARGC1A, INSIG1, FASN, and SREBF2 genes and significantly upregulated the expression of INSIG2 gene but had no significant effect on the expression of ACSL1, GPAM, and SREBF1 genes. PPARG overexpression significantly increased the relative mRNA abundance of CD36, FABP3, FABP4, ACSS2, ELOVL6, DGAT2, BTN1A1, AGPAT6, LPIN1, PPARGC1A, INSIG1, and SREBF2 genes and significantly downregulated the expression of INSIG2 gene but had no significant effect on the expression of ACSL1, GPAM, ABCG2, FASN, and SREBF1 genes. In addition, knockdown/overexpression of PPARG gene significantly decreased/increased triacylglycerol (TAG) content in BMECs. This study revealed that buffalo PPARG gene is a key gene regulating buffalo milk fat synthesis.


Assuntos
Búfalos/genética , Búfalos/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Gotículas Lipídicas/metabolismo , Glândulas Mamárias Animais/citologia , Leite/metabolismo , PPAR gama/genética , PPAR gama/fisiologia , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Proteína 3 Ligante de Ácido Graxo/genética , Proteína 3 Ligante de Ácido Graxo/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Triglicerídeos/metabolismo
6.
J Dairy Res ; 88(4): 401-406, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35042574

RESUMO

Insulin-induced gene 2 (INSIG2) is a recently identified gene that is implicated in the regulation of cholesterol metabolism and lipogenesis in mammals. Although the data in goats emphasizes a role for INSIG2 in milk fat synthesis, the regulatory mechanism in buffalo is not clear. In this study, we analyzed the protein abundance of INSIG2 at peak lactation and dry-off period in buffalo mammary tissue. The results indicated that, relative to the peak lactation, the protein abundance of INSIG2 in the dry-off period was higher. To determine the function of INSIG2 in milk fat synthesis, INSIG2 was overexpressed and knocked down by lentiviral transfection in buffalo mammary epithelial cells (BuMECs). The response to overexpressing INSIG2 included down-regulation of SREBP, PPARG, FASN, ELOVL6, SCD, APGAT6 and TIP47 coupled with a decrease in content of triacylglycerol (TAG). However, in response to knockdown of INSIG2, the significant increase in content of TAG along with marked up-regulation of SREBP, PPARG, FASN, ELOVL6, SCD, APGAT6 and TIP47 suggests that INSIG2 negatively affects milk fat synthesis in BuMECs. No significant difference in mRNA abundance of GPAM and DGAT2 in response to overexpression or interference of INSIG2 indicates that they might also be influenced by other regulatory factors. Taken together, our results provide strong support for the negative effect of INSIG2 on milk fat synthesis in BuMECs.


Assuntos
Búfalos , Insulinas , Animais , Células Epiteliais , Ácidos Graxos , Feminino , Lactação , Glândulas Mamárias Animais , Leite
7.
J Dairy Res ; 87(3): 349-355, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32907640

RESUMO

We hypothesized that insulin-induced gene 1 (INSIG1) affects milk fat synthesis in buffalo. For this reason, the protein abundance of INSIG1 in the mammary tissue of buffalo during the peak period of lactation and dry-off period was evaluated. The results showed that the expression of INSIG1 at the peak of lactation was lower than that in the dry-off period. To explore the role of INSIG1 in milk fat synthesis, the buffalo mammary epithelial cells (BMECs) were isolated and purified from buffalo mammary tissue, and INSIG1 gene were overexpressed and knocked down by constructing the recombinant lentivirus vector of INSIG1 gene and transfecting into BMECs. Results revealed that INSIG1 overexpression decreased the expression of INSIG2, SREBP, PPARG, SCD, GPAM, DGAT2 and AGPAT6, which led to reduction of triglycerides (TAG) content in the cell. In contrast, knockdown of INSIG1 had a positive effect on mRNA expression of the above genes. Overall, the data provide strong support for a key role of INSIG1 in the regulation of milk fat synthesis in BMECs.


Assuntos
Búfalos , Células Epiteliais/efeitos dos fármacos , Gorduras/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glândulas Mamárias Animais/citologia , Leite/química , Animais , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA