Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1120718, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874014

RESUMO

In this study, we investigated the effect of dietary methionine restriction (MR) on the antioxidant function and inflammatory responses in lipopolysaccharide (LPS)-challenged broilers reared at high stocking density. A total of 504 one-day-old male Arbor Acre broiler chickens were randomly divided into four treatments: 1) CON group, broilers fed a basal diet; 2) LPS group, LPS-challenged broilers fed a basal diet; 3) MR1 group, LPS-challenged broilers fed a methionine-restricted diet (0.3% methionine); and 4) MR2 group, LPS-challenged broilers fed a methionine-restricted diet (0.4% methionine). LPS-challenged broilers were intraperitoneally injected with 1 mg/kg body weight (BW) of LPS at 17, 19, and 21 days of age, whereas the CON group was injected with sterile saline. The results showed that: LPS significantly increased the liver histopathological score (p < 0.05); LPS significantly decreased the serum total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activity at 3 h after injection (p < 0.05); the LPS group had a higher content of Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α (TNF)-α, but a lower content of IL-10 than the CON group in serum (p < 0.05). Compared with the LPS group, the MR1 diet increased catalase (CAT), SOD, and T-AOC, and the MR2 diet increased SOD and T-AOC at 3 h after injection in serum (p < 0.05). Only MR2 group displayed a significantly decreased liver histopathological score (p < 0.05) at 3 h, while MR1 and MR2 groups did so at 8 h. Both MR diets significantly decreased serum LPS, CORT, IL-1ß, IL-6, and TNF-α contents, but increased IL-10 content (p < 0.05). Moreover, the MR1 group displayed significantly increased expression of nuclear factor erythroid 2-related factor 2 (Nrf2), CAT, and GSH-Px at 3 h; the MR2 group had a higher expression of Kelch-like ECH-associated protein 1 (Keap1), SOD, and GSH-Px at 8 h (p < 0.05). In summary, MR can improve antioxidant capacity, immunological stress, and liver health in LPS-challenged broilers. The MR1 and MR2 groups experienced similar effects on relieving stress; however, MR1 alleviated oxidative stress more rapidly. It is suggested that precise regulation of methionine levels in poultry with stress may improve the immunity of broilers, reduce feed production costs, and increase production efficiency in the poultry industry.

2.
Animals (Basel) ; 12(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36077936

RESUMO

This study was conducted to investigate the effects of different levels of yeast chromium on growth performance, organ index, antioxidant capacity, immune performance and liver health of broilers under high stocking density. A total of 684 1-day-old Arbor Acres broilers were selected and fed a common diet from 1 to 22 days of age. At the end of 22 days, broilers with similar weight were randomly divided into six treatments, with six replications in each treatment. The broilers in control groups were fed with a control diet and raised at low stocking density of broilers (14 broilers/m2, LSD) and high stocking density (20 broilers/m2, HSD). The broilers in treatment groups were fed with diets supplemented with 200, 400, 800 and 1600 µg Cr/kg chromium yeast (Cr-yeast) under HSD, respectively. The experimental period was 23~42 days. Compared with the LSD group, the HSD group significantly decreased the liver index (ratio of liver weight to live weight of broilers) of broilers (p < 0.05), the HSD group significantly increased the content of corticosterone (CORT) and the activities of alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and decreased the prealbumin (PA) level in the serum (p < 0.05). HSD decreased the total antioxidant capacity (T-AOC) contents in the serum, liver and breast, serum glutathione peroxidase (GSH-Px) activities, breast total superoxide dismutase (T-SOD) activities and liver catalase (CAT) activities of broilers (p < 0.05). The HSD group significantly increased the total histopathological score (p < 0.05). Compared with the HSD group, adding 200, 400, and 1600 Cr-yeast significantly increased the liver index of broilers (p < 0.05), all HSD + Cr-yeast groups decreased the ALT activities (p < 0.05), and the HSD + 800 group significantly decreased the CORT contents and the ALP activities of the serum (p < 0.05); the HSD + 400, 800 and 1600 groups increased the PA contents of the serum (p < 0.05); HSD + 800 group significantly reduced the tumor necrosis factor-α (TNF-α) and Interleukin-1ß (IL-1ß) contents of the serum (p < 0.05); moreover, the HSD + 400 group increased the GSH-Px activities of the serum (p < 0.05), the T-AOC and the T-SOD activities of the breast (p < 0.05) and the T-AOC and CAT activities of the liver (p < 0.05). Adding 800 Cr-yeast significantly decreased the total histopathological score (degree of hepatocyte edema and inflammatory cell infiltration) under HSD (p < 0.05). In summary, Cr-yeast can improve the antioxidant capacity and immune traits, and liver health of broilers under HSD. Based on the results of the linear regression analysis, the optimal supplementation of Cr-yeast in antioxidant capacity, immunity ability and liver health were at the range of 425.00−665.00, 319.30−961.00, and 800.00−1531.60 µg Cr/kg, respectively.

3.
Animals (Basel) ; 12(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35804503

RESUMO

Although Iron (Fe) is an essential nutrient that plays a vital role in respiratory processes, excessive Fe in the diet can affect the health of broilers. We investigated the effects of diet supplemented with high levels of iron chelates with lysine and glutamic acid (Fe−LG) on the growth performance, serum biochemical parameters, antioxidant status, and duodenal mRNA expression of Fe transporters in broilers. A total of 800 1-day-old male Arbor Acres broilers were assigned to 5 groups, with 8 replicates each. Broilers were fed a corn−soybean meal basal diet or basal diets supplemented with 40, 80, 400, or 800 mg Fe/kg as Fe−LG for 6 weeks. The body weight (BW) was increased in the 80 mg Fe/kg treatment group, but decreased in the 800 mg Fe/kg treatment group on day 21. During days 1−21, compared with the control group, the supplementation of the 80 mg Fe/kg increased the average daily gain (ADG) and average daily feed intake (ADFI); however, the supplementation of the 800 mg Fe/kg group decreased the ADG and increased the FCR in broilers (p < 0.05). The heart, liver, spleen, and kidney indices were reduced in the 800 mg Fe/kg treatment group (p < 0.05). The supplementation of the 800 mg Fe/kg group increased the serum aspartate aminotransferase activity and the levels of creatinine and urea nitrogen on day 42 (p < 0.05). The broilers had considerably low liver total superoxide dismutase activity and total antioxidant capacity in the 800 mg Fe/kg treatment group (p < 0.05). Serum and liver Fe concentrations were elevated in the 400 and 800 mg Fe/kg treatment groups, but were not affected in the 40 and 80 mg Fe/kg treatment groups. The duodenal Fe transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) were downregulated in the Fe−LG treatment groups (p < 0.05). We conclude that a high dietary supplement of 800 mg Fe/kg in broilers leads to detrimental health effects, causing kidney function injury and liver oxidative stress.

4.
J Sci Food Agric ; 101(9): 3917-3926, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33368290

RESUMO

BACKGROUND: Trivalent chromium (Cr) is involved in carbohydrate, lipid, protein and nucleic acid metabolism in animals. This study evaluated the effects of different organic Cr forms with Cr methionine (CrMet), Cr picolinate (CrPic), Cr nicotinate (CrNic), and Cr yeast (Cr-yeast) at the level of 400 µg kg-1 Cr, on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles of broilers. In total, 540 one-day-old Arbor Acres male broilers were randomly assigned to five treatments with six replicates (18 broilers per replicate) until day 42. RESULTS: The results showed growth performance was not affected by Cr sources. The Cr-yeast group had lower serum cortisol levels than the CrNic group (P < 0.05). Besides, Cr-yeast increased methionine and cysteine content in breast compared with the control group. Liver malondialdehyde content was lower in the CrMet group than the CrPic group on day 42 (P < 0.05). The n-3 polyunsaturated fatty acid (PUFA) values were increased, but the n-6/n-3 PUFA ratio was decreased in both CrMet and CrNic groups (P < 0.05). There were no significant effects on broilers' serum antioxidant status and breast total essential amino acid content among all treatments. CONCLUSIONS: Diets supplemented with organic Cr could regulate lipid metabolism, and improve amino acid and fatty acid profiles in broiler breast. Moreover, Cr-yeast was the most effective source in improving methionine and cysteine content, whereas CrMet was more effective than CrNic in increasing n-3 PUFA value and decreasing n-6/n-3 PUFA ratio in breast meat and effectively strengthened liver antioxidant ability than CrPic. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aminoácidos/química , Antioxidantes/metabolismo , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Cromo/metabolismo , Ácidos Graxos/química , Carne/análise , Aminoácidos/metabolismo , Ração Animal/análise , Animais , Suplementos Nutricionais/análise , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Fígado/química , Fígado/metabolismo , Masculino , Malondialdeído/análise , Malondialdeído/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo
5.
PLoS One ; 12(12): e0186828, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29240752

RESUMO

We aimed to determine the effect of low dietary energy on intestinal phosphate transport and the possible underlying mechanism to explain the long-term effects of early dietary energy restriction and non-phytate phosphorus (NPP). A 2 × 3 factorial experiment, consisting of 2 energy levels and 3 NPP levels, was conducted. Broiler growth performance, intestinal morphology in 0-21 days and 22-35 days, type IIb sodium-phosphate co-transporter (NaPi-IIb) mRNA expression, adenylate purine concentrations in the duodenum, and phosphorylated adenosine monophosphate-activated protein kinase (AMPK-α) activity in 0-21 days were determined. The following results were obtained. (1) Low dietary energy (LE) induced a high feed conversion ratio (FCR) and significantly decreased body weight gain in young broilers, but LE induced significantly higher compensatory growth in low NPP (LP) groups than in the high or medium NPP groups (HP and MP). (2) LE decreased the villus height (VH) in the intestine, and LE-HP resulted in the lowest crypt depth (CD) and the highest VH:CD ratio in the initial phase. However, in the later period, the LE-LP group showed an increased VH:CD ratio and decreased CD in the intestine. (3) LE increased ATP synthesis and decreased AMP:ATP ratio in the duodenal mucosa of chickens in 0-21 days, and LP diet increased ATP synthesis and adenylate energy charges but decreased AMP production and AMP:ATP ratio. (4) LE led to weaker AMPK phosphorylation, higher mTOR phosphorylation, and higher NaPi-IIb mRNA expression. Thus, LE and LP in the early growth phase had significant compensatory and interactive effect on later growth and intestinal development in broilers. The effect might be relevant to energy status that LE leads to weaker AMPK phosphorylation, causing a lower inhibitory action toward mTOR phosphorylation. This series of events stimulates NaPi-IIb mRNA expression. Our findings provide a theoretical basis and a new perspective on intestinal phosphate transport regulation, with potential applications in broiler production.


Assuntos
Adenilato Quinase/metabolismo , Galinhas/crescimento & desenvolvimento , Ingestão de Energia , Mucosa Intestinal/metabolismo , Fósforo/administração & dosagem , Trifosfato de Adenosina/biossíntese , Animais , Transporte Biológico , Galinhas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA