Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 11(1): 10455, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001972

RESUMO

Lung carcinoids are variably aggressive and mechanistically understudied neuroendocrine neoplasms (NENs). Here, we identified and elucidated the function of a miR-375/yes-associated protein (YAP) axis in lung carcinoid (H727) cells. miR-375 and YAP are respectively high and low expressed in wild-type H727 cells. Following lentiviral CRISPR/Cas9-mediated miR-375 depletion, we identified distinct transcriptomic changes including dramatic YAP upregulation. We also observed a significant decrease in neuroendocrine differentiation and substantial reductions in cell proliferation, transformation, and tumor growth in cell culture and xenograft mouse disease models. Similarly, YAP overexpression resulted in distinct and partially overlapping transcriptomic changes, phenocopying the effects of miR-375 depletion in the same models as above. Transient YAP knockdown in miR-375-depleted cells reversed the effects of miR-375 on neuroendocrine differentiation and cell proliferation. Pathways analysis and confirmatory real-time PCR studies of shared dysregulated target genes indicate that this axis controls neuroendocrine related functions such as neural differentiation, exocytosis, and secretion. Taken together, we provide compelling evidence that a miR-375/YAP axis is a critical mediator of neuroendocrine differentiation and tumorigenesis in lung carcinoid cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Tumor Carcinoide/genética , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , Células Neuroendócrinas/patologia , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinogênese/genética , Tumor Carcinoide/patologia , Diferenciação Celular/genética , Proliferação de Células/genética , Exocitose/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP
2.
Cancer Discov ; 11(10): 2638-2657, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33910926

RESUMO

Pancreatic neuroendocrine tumors (PanNET) comprise two molecular subtypes, relatively benign islet tumors (IT) and invasive, metastasis-like primary (MLP) tumors. Until now, the origin of aggressive MLP tumors has been obscure. Herein, using multi-omics approaches, we revealed that MLP tumors arise from IT via dedifferentiation following a reverse trajectory along the developmental pathway of islet ß cells, which results in the acquisition of a progenitor-like molecular phenotype. Functionally, the miR-181cd cluster induces the IT-to-MLP transition by suppressing expression of the Meis2 transcription factor, leading to upregulation of a developmental transcription factor, Hmgb3. Notably, the IT-to-MLP transition constitutes a distinct step of tumorigenesis and is separable from the classic proliferation-associated hallmark, temporally preceding accelerated proliferation of cancer cells. Furthermore, patients with PanNET with elevated HMGB3 expression and an MLP transcriptional signature are associated with higher-grade tumors and worse survival. Overall, our results unveil a new mechanism that modulates cancer cell plasticity to enable malignant progression. SIGNIFICANCE: Dedifferentiation has long been observed as a histopathologic characteristic of many cancers, albeit inseparable from concurrent increases in cell proliferation. Herein, we demonstrate that dedifferentiation is a mechanistically and temporally separable step in the multistage tumorigenesis of pancreatic islet cells, retracing the developmental lineage of islet ß cells.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Transformação Celular Neoplásica , Regulação da Expressão Gênica , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/genética , Animais , Modelos Animais de Doenças , Camundongos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia
3.
Proc Natl Acad Sci U S A ; 116(48): 24184-24195, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31704767

RESUMO

MicroRNA-mediated gene regulation has been implicated in various diseases, including cancer. This study examined the role of microRNAs (miRNAs) during tumorigenesis and malignant progression of pancreatic neuroendocrine tumors (PanNETs) in a genetically engineered mouse model. Previously, a set of miRNAs was observed to be specifically up-regulated in a highly invasive and metastatic subtype of mouse and human PanNET. Using functional assays, we now implicate different miRNAs in distinct phenotypes: miR-137 stimulates tumor growth and local invasion, whereas the miR-23b cluster enables metastasis. An algorithm, Bio-miRTa, has been developed to facilitate the identification of biologically relevant miRNA target genes and applied to these miRNAs. We show that a top-ranked miR-137 candidate gene, Sorl1, has a tumor suppressor function in primary PanNETs. Among the top targets for the miR-23b cluster, Acvr1c/ALK7 has recently been described to be a metastasis suppressor, and we establish herein that it is down-regulated by the miR-23b cluster, which is crucial for its prometastatic activity. Two other miR-23b targets, Robo2 and P2ry1, also have demonstrable antimetastatic effects. Finally, we have used the Bio-miRTa algorithm in reverse to identify candidate miRNAs that might regulate activin B, the principal ligand for ALK7, identifying thereby a third family of miRNAs-miRNA-130/301-that is congruently up-regulated concomitant with down-regulation of activin B during tumorigenesis, suggestive of functional involvement in evasion of the proapoptotic barrier. Thus, dynamic up-regulation of miRNAs during multistep tumorigenesis and malignant progression serves to down-regulate distinctive suppressor mechanisms of tumor growth, invasion, and metastasis.


Assuntos
Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Receptores de Ativinas Tipo I/genética , Ativinas/genética , Algoritmos , Animais , Linhagem Celular Tumoral , Biologia Computacional/métodos , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas de Membrana Transportadoras/genética , Camundongos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/mortalidade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico , Receptores de LDL/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Nature ; 573(7775): 526-531, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534217

RESUMO

Metastasis-the disseminated growth of tumours in distant organs-underlies cancer mortality. Breast-to-brain metastasis (B2BM) is a common and disruptive form of cancer and is prevalent in the aggressive basal-like subtype, but is also found at varying frequencies in all cancer subtypes. Previous studies revealed parameters of breast cancer metastasis to the brain, but its preference for this site remains an enigma. Here we show that B2BM cells co-opt a neuronal signalling pathway that was recently implicated in invasive tumour growth, involving activation by glutamate ligands of N-methyl-D-aspartate receptors (NMDARs), which is key in model systems for metastatic colonization of the brain and is associated with poor prognosis. Whereas NMDAR activation is autocrine in some primary tumour types, human and mouse B2BM cells express receptors but secrete insufficient glutamate to induce signalling, which is instead achieved by the formation of pseudo-tripartite synapses between cancer cells and glutamatergic neurons, presenting a rationale for brain metastasis.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/secundário , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Neoplasias Encefálicas/ultraestrutura , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Metástase Neoplásica , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica
5.
Dev Cell ; 49(3): 409-424.e6, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063757

RESUMO

Herein, we report that the TGFß superfamily receptor ALK7 is a suppressor of tumorigenesis and metastasis, as revealed by functional studies in mouse models of pancreatic neuroendocrine and luminal breast cancer, complemented by experimental metastasis assays. Activation in neoplastic cells of the ALK7 signaling pathway by its principal ligand activin B induces apoptosis. During tumorigenesis, cancer cells use two different approaches to evade this barrier, either downregulating activin B and/or downregulating ALK7. Suppressing ALK7 expression additionally contributes to the capability for metastatic seeding. ALK7 is associated with shorter relapse-free survival of various human cancers and distant-metastasis-free survival of breast cancer patients. This study introduces mechanistic insights into primary and metastatic tumor development, in the form of a protective barrier that triggers apoptosis in cells that are not "authorized" to proliferate within a particular tissue, by virtue of those cells expressing ALK7 in a tissue microenvironment bathed in its ligand.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Ativinas/metabolismo , Neoplasias/metabolismo , Animais , Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Feminino , Xenoenxertos , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos C57BL , Camundongos SCID , Metástase Neoplásica , Neoplasias/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
6.
Cell Rep ; 27(7): 2119-2131.e6, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091450

RESUMO

Many autoimmune and infectious diseases are characterized by the formation of granulomas which are inflammatory lesions that consist of spatially organized immune cells. These sites protect the host and control pathogens like Mycobacterium tuberculosis (Mtb), but are highly inflammatory and cause pathology. Using bacille Calmette-Guerin (BCG) and Mtb infection in mice that induce sarcoid or caseating granulomas, we show that a subpopulation of granuloma macrophages produces vascular endothelial growth factor (VEGF-A), which recruits immune cells to the granuloma by a non-angiogenic pathway. Selective blockade of VEGF-A in myeloid cells, combined with granuloma transplantation, shows that granuloma VEGF-A regulates granulomatous inflammation. The severity of granuloma-related inflammation can be ameliorated by pharmaceutical or genetic inhibition of VEGF-A, which improves survival of mice infected with virulent Mtb without altering host protection. These data show that VEGF-A inhibitors could be used as a host-directed therapy against granulomatous diseases like tuberculosis and sarcoidosis, thereby expanding the value of already existing and approved anti-VEGF-A drugs.


Assuntos
Inibidores da Angiogênese/farmacologia , Granuloma , Macrófagos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculose Pulmonar , Fator A de Crescimento do Endotélio Vascular , Animais , Granuloma/tratamento farmacológico , Granuloma/genética , Granuloma/metabolismo , Granuloma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Knockout , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/metabolismo , Tuberculose Pulmonar/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Pathol ; 245(2): 209-221, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603739

RESUMO

High-grade brain cancer such as glioblastoma (GBM) remains an incurable disease. A common feature of GBM is the angiogenic vasculature, which can be targeted with selected peptides for payload delivery. We assessed the ability of micelle-tagged, vascular homing peptides RGR, CGKRK and NGR to specifically bind to blood vessels in syngeneic orthotopic GBM models. By using the peptide CGKRK to deliver the tumour necrosis factor (TNF) superfamily member LIGHT (also known as TNF superfamily member 14; TNFSF14) to angiogenic tumour vessels, we have generated a reagent that normalizes the brain cancer vasculature by inducing pericyte contractility and re-establishing endothelial barrier integrity. LIGHT-mediated vascular remodelling also activates endothelia and induces intratumoural high endothelial venules (HEVs), which are specialized blood vessels for lymphocyte infiltration. Combining CGKRK-LIGHT with anti-vascular endothelial growth factor and checkpoint blockade amplified HEV frequency and T-cell accumulation in GBM, which is often sparsely infiltrated by immune effector cells, and reduced tumour burden. Furthermore, CGKRK and RGR peptides strongly bound to blood vessels in freshly resected human GBM, demonstrating shared peptide-binding activities in mouse and human primary brain tumour vessels. Thus, peptide-mediated LIGHT targeting is a highly translatable approach in primary brain cancer to reduce vascular leakiness and enhance immunotherapy. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos , Glioblastoma/tratamento farmacológico , Neovascularização Patológica , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/farmacologia , Remodelação Vascular/efeitos dos fármacos , Vênulas/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Composição de Medicamentos , Feminino , Glioblastoma/sangue , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micelas , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/patologia , Fenótipo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Vênulas/metabolismo , Vênulas/patologia
8.
BMC Cancer ; 17(1): 539, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800750

RESUMO

BACKGROUND: Angipoietin-1 activation of the tyrosine kinase receptor Tek expressed mainly on endothelial cells leads to survival and stabilization of endothelial cells. Studies have shown that Angiopoietin-1 counteracts permeability induced by a number of stimuli. Here, we test the hypothesis that loss of Angiopoietin-1/Tek signaling in the vasculature would increase metastasis. METHODS: Angiopoietin-1 was deleted in mice just before birth using floxed Angiopoietin-1 and Tek mice crossed to doxycycline-inducible bitransgenic ROSA-rtTA/tetO-Cre mice. By crossing Angiopoietin-1 knockout mice to the MMTV-PyMT autochthonous mouse breast cancer model, we investigated primary tumor growth and metastasis to the lung. Furthermore, we utilized B16F10 melanoma cells subcutaneous and experimental lung metastasis models in Angiopoietin-1 and Tek knockout mice. RESULTS: We found that primary tumor growth in MMTV-PyMT mice was unaffected, while metastasis to the lung was significantly increased in Angiopoietin-1 knockout MMTV-PyMT mice. In addition, angiopoietin-1 deficient mice exhibited a significant increase in lung metastasis of B16F10 melanoma cells, compared to wild type mice 3 weeks after injection. Additional experiments showed that this was likely an early event due to increased attachment or extravasation of tumor cells, since seeding of tumor cells was significantly increased 4 and 24 h post tail vein injection. Finally, using inducible Tek knockout mice, we showed a significant increase in tumor cell seeding to the lung, suggesting that Angiopoietin-1/Tek signaling is important for vascular integrity to limit metastasis. CONCLUSIONS: This study show that loss of the Angiopoietin-1/Tek vascular growth factor system leads to increased metastasis without affecting primary tumor growth.


Assuntos
Angiopoietina-1/genética , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Melanoma/patologia , Transdução de Sinais , Angiopoietina-1/metabolismo , Animais , Feminino , Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica/genética
9.
Sci Transl Med ; 9(385)2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404866

RESUMO

Inhibitors of VEGF (vascular endothelial growth factor)/VEGFR2 (vascular endothelial growth factor receptor 2) are commonly used in the clinic, but their beneficial effects are only observed in a subset of patients and limited by induction of diverse relapse mechanisms. We describe the up-regulation of an adaptive immunosuppressive pathway during antiangiogenic therapy, by which PD-L1 (programmed cell death ligand 1), the ligand of the negative immune checkpoint regulator PD-1 (programmed cell death protein 1), is enhanced by interferon-γ-expressing T cells in distinct intratumoral cell types in refractory pancreatic, breast, and brain tumor mouse models. Successful treatment with a combination of anti-VEGFR2 and anti-PD-L1 antibodies induced high endothelial venules (HEVs) in PyMT (polyoma middle T oncoprotein) breast cancer and RT2-PNET (Rip1-Tag2 pancreatic neuroendocrine tumors), but not in glioblastoma (GBM). These HEVs promoted lymphocyte infiltration and activity through activation of lymphotoxin ß receptor (LTßR) signaling. Further activation of LTßR signaling in tumor vessels using an agonistic antibody enhanced HEV formation, immunity, and subsequent apoptosis and necrosis in pancreatic and mammary tumors. Finally, LTßR agonists induced HEVs in recalcitrant GBM, enhanced cytotoxic T cell (CTL) activity, and thereby sensitized tumors to antiangiogenic/anti-PD-L1 therapy. Together, our preclinical studies provide evidence that anti-PD-L1 therapy can sensitize tumors to antiangiogenic therapy and prolong its efficacy, and conversely, antiangiogenic therapy can improve anti-PD-L1 treatment specifically when it generates intratumoral HEVs that facilitate enhanced CTL infiltration, activity, and tumor cell destruction.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Feminino , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia
10.
J Clin Invest ; 127(1): 199-214, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918307

RESUMO

Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.


Assuntos
Fator H do Complemento/metabolismo , Proteínas do Olho/metabolismo , Podócitos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Animais , Fator H do Complemento/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Feminino , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Podócitos/patologia , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Epitélio Pigmentado da Retina/patologia , Microangiopatias Trombóticas/genética , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(7): E864-73, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831065

RESUMO

Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRß) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRß, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRß. The presence of a subclonal population of tumor cells characterized by PDGFRß expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRß axis.


Assuntos
Linfocinas/genética , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Fator de Crescimento Derivado de Plaquetas/genética , Animais , Proliferação de Células/genética , Camundongos , Neovascularização Patológica , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/genética , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/genética
12.
Hepatology ; 62(2): 417-28, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26011400

RESUMO

UNLABELLED: Liver-targeted gene therapy based on recombinant adeno-associated viral vectors (rAAV) shows promising therapeutic efficacy in animal models and adult-focused clinical trials. This promise, however, is not directly translatable to the growing liver, where high rates of hepatocellular proliferation are accompanied by loss of episomal rAAV genomes and subsequently a loss in therapeutic efficacy. We have developed a hybrid rAAV/piggyBac transposon vector system combining the highly efficient liver-targeting properties of rAAV with stable piggyBac-mediated transposition of the transgene into the hepatocyte genome. Transposition efficiency was first tested using an enhanced green fluorescent protein expression cassette following delivery to newborn wild-type mice, with a 20-fold increase in stably gene-modified hepatocytes observed 4 weeks posttreatment compared to traditional rAAV gene delivery. We next modeled the therapeutic potential of the system in the context of severe urea cycle defects. A single treatment in the perinatal period was sufficient to confer robust and stable phenotype correction in the ornithine transcarbamylase-deficient Spf(ash) mouse and the neonatal lethal argininosuccinate synthetase knockout mouse. Finally, transposon integration patterns were analyzed, revealing 127,386 unique integration sites which conformed to previously published piggyBac data. CONCLUSION: Using a hybrid rAAV/piggyBac transposon vector system, we achieved stable therapeutic protection in two urea cycle defect mouse models; a clinically conceivable early application of this technology in the management of severe urea cycle defects could be as a bridging therapy while awaiting liver transplantation; further improvement of the system will result from the development of highly human liver-tropic capsids, the use of alternative strategies to achieve transient transposase expression, and engineered refinements in the safety profile of piggyBac transposase-mediated integration.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/farmacologia , Hiperamonemia/terapia , Ureia/metabolismo , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Hiperamonemia/diagnóstico , Hepatopatias/terapia , Camundongos , Camundongos Transgênicos , Índice de Gravidade de Doença , Estatísticas não Paramétricas
13.
EMBO Mol Med ; 6(5): 604-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705878

RESUMO

Current therapeutic antiangiogenic biologics used for the treatment of pathological ocular angiogenesis could have serious side effects due to their interference with normal blood vessel physiology. Here, we report the generation of novel antivascular endothelial growth factor-A (VEGF) biologics, termed VEGF "Sticky-traps," with unique properties that allow for local inhibition of angiogenesis without detectable systemic side effects. Using genetic and pharmacological approaches, we demonstrated that Sticky-traps could locally inhibit angiogenesis to at least the same extent as the original VEGF-trap that also gains whole-body access. Sticky-traps did not cause systemic effects, as shown by uncompromised wound healing and normal tracheal vessel density. Moreover, if injected intravitreally, recombinant Sticky-trap remained localized to various regions of the eye, such as the inner-limiting membrane and ciliary body, for prolonged time periods, without gaining access either to the photoreceptors/choriocapillaris area or the circulation. These unique pharmacological characteristics of Sticky-trap could allow for safe treatment of pathological angiogenesis in patients with diabetic retinopathy and retinopathy of pre-maturity.


Assuntos
Produtos Biológicos/metabolismo , Olho/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Produtos Biológicos/efeitos adversos , Produtos Biológicos/farmacocinética , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/farmacocinética , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Fator A de Crescimento do Endotélio Vascular/genética
14.
J Clin Invest ; 123(11): 4900-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24084735

RESUMO

Vascular networks develop from a growing vascular front that responds to VEGF and other guidance cues. Angiogenesis is required for normal tissue function, but, under conditions of stress, inappropriate vascularization can lead to disease. Therefore, inhibition of angiogenic sprouting may prevent neovascularization in patients with blinding neovascular eye diseases, including macular degeneration. VEGF antagonists have therapeutic benefits but also can elicit off-target effects. Here, we found that the Ras pathway, which functions downstream of a wide range of cytokines including VEGF, is active in the growing vascular front of developing and pathological vascular networks. The endogenous Ras inhibitor p120RasGAP was expressed predominately in quiescent VEGF-insensitive endothelial cells and was ectopically downregulated in multiple neovascular models. MicroRNA-132 negatively regulated p120RasGAP expression. Experimental delivery of α-miR-132 to developing mouse eyes disrupted tip cell Ras activity and prevented angiogenic sprouting. This strategy prevented ocular neovascularization in multiple rodent models even more potently than the VEGF antagonist, VEGF-trap. Targeting microRNA-132 as a therapeutic strategy may prove useful for treating multiple neovascular diseases of the eye and for preventing vision loss regardless of the neovascular stimulus.


Assuntos
Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/prevenção & controle , Proteínas ras/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica , Receptores de LDL/deficiência , Receptores de LDL/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Proteínas ras/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(13): 5004-9, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23476064

RESUMO

Reported here is a piggyBac transposon-based expression system for the generation of doxycycline-inducible, stably transfected mammalian cell cultures for large-scale protein production. The system works with commonly used adherent and suspension-adapted mammalian cell lines and requires only a single transfection step. Moreover, the high uniform expression levels observed among clones allow for the use of stable bulk cell cultures, thereby eliminating time-consuming cloning steps. Under continuous doxycycline induction, protein expression levels have been shown to be stable for at least 2 mo in the absence of drug selection. The high efficiency of the system also allows for the generation of stable bulk cell cultures in 96-well format, a capability leading to the possibility of generating stable cell cultures for entire families of membrane or secreted proteins. Finally, we demonstrate the utility of the system through the large-scale production (140-750 mg scale) of an endoplasmic reticulum-resident fucosyltransferase and two potential anticancer protein therapeutic agents.


Assuntos
Elementos de DNA Transponíveis , Expressão Gênica , Proteínas Recombinantes/biossíntese , Elementos de Resposta , Animais , Antibacterianos/farmacologia , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Tetraciclina/farmacologia , Transfecção
16.
Cell Metab ; 17(1): 61-72, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23312284

RESUMO

Vascular endothelial growth factor A (VEGF) is highly expressed in adipose tissue. Its role, however, has not been fully elucidated. Here, we reveal the metabolic role of adipose-VEGF by studying mice with deletion (VEGF(AdΔ)) or doxycycline-inducible overexpression of a VEGF transgene (VEGF(AdTg)) in the adipose tissue. VEGF(AdΔ) mice have reduced adipose vascular density and show adipose hypoxia, apoptosis, inflammation, and metabolic defects on a high-fat diet. In contrast, induction of VEGF expression in VEGF(AdTg) mice leads to increased adipose vasculature and reduced hypoxia. The latter changes are sufficient to counteract an established compromising effect of high-fat diet on the metabolism, indicating that metabolic misbalance is reversible by adipose vessel density increase. Our data clearly show the essential role of VEGF signaling for adequate adipose function. Besides revealing insights into the molecular mechanisms of obesity-related metabolic diseases, this study points to the therapeutic potential of increased adipose angiogenesis.


Assuntos
Tecido Adiposo/metabolismo , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/efeitos dos fármacos , Animais , Apoptose , Dieta Hiperlipídica , Doxiciclina/farmacologia , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina , Macrófagos/imunologia , Macrófagos/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Animais , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
17.
Mol Cancer ; 11: 89, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23231822

RESUMO

BACKGROUND: Transgenes introduced into cancer cell lines serve as powerful tools for identification of genes involved in cancer. However, the random nature of genomic integration site of a transgene highly influences the fidelity, reliability and level of its expression. In order to alleviate this bottleneck, we characterized the potential utility of a novel PhiC31 integrase-mediated site-specific insertion system (PhiC31-IMSI) for introduction of transgenes into a pre-inserted docking site in the genome of cancer cells. METHODS: According to this system, a "docking-site" was first randomly inserted into human cancer cell lines and clones with a single copy were selected. Subsequently, an "incoming" vector containing the gene of interest was specifically inserted in the docking-site using PhiC31. RESULTS: Using the Pc-3 and SKOV-3 cancer cell lines, we showed that transgene insertion is reproducible and reliable. Furthermore, the selection system ensured that all surviving stable transgenic lines harbored the correct integration site. We demonstrated that the expression levels of reporter genes, such as green fluorescent protein and luciferase, from the same locus were comparable among sister, isogenic clones. Using in vivo xenograft studies, we showed that the genetically altered cancer cell lines retain the properties of the parental line. To achieve temporal control of transgene expression, we coupled our insertion strategy with the doxycycline inducible system and demonstrated tight regulation of the expression of the antiangiogenic molecule sFlt-1-Fc in Pc-3 cells. Furthermore, we introduced the luciferase gene into the insertion cassette allowing for possible live imaging of cancer cells in transplantation assays. We also generated a series of Gateway cloning-compatible intermediate cassettes ready for high-throughput cloning of transgenes and demonstrated that PhiC31-IMSI can be achieved in a high throughput 96-well plate format. CONCLUSIONS: The novel PhiC31-IMSI system described in this study represents a powerful tool that can facilitate the characterization of cancer-related genes.


Assuntos
Técnicas de Transferência de Genes , Recombinação Homóloga , Neoplasias/genética , Transgenes , Animais , Linhagem Celular Tumoral , Doxiciclina/farmacologia , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Genes Reporter , Vetores Genéticos , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Reprodutibilidade dos Testes , Transplante Heterólogo
18.
Curr Opin Hematol ; 17(3): 206-12, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20216210

RESUMO

PURPOSE OF REVIEW: In addition to the crucial role of vascular endothelial growth factor (VEGF)A in vessel development, it has become apparent that the VEGF signaling pathway (VSP) plays an important role during adulthood in the maintenance of tissue homeostasis in normal physiological processes, as well as in pathological conditions. This review will focus on the role of the VSP for proper function of many organs in adult life. RECENT FINDINGS: Although adult angiogenesis is essentially quiescent--with the exception for wound healing and the menstrual cycle--manipulations of the VSP in mice have revealed its much broader and essential role in adult physiology and pathological conditions. Although suppression of the VSP is a promising clinical approach to treat cancer and age-related macular degeneration, it is associated with severe side effects. These adverse reactions caused by systemic VSP suppression in patients and the knowledge that has been gained from mouse models have contributed to our increasing understanding of the vast spectrum of functions that can be attributed to VEGF. SUMMARY: We will review the multifaceted role of VEGF signaling in adult life and highlight how genetic approaches have verified and explained the spectrum of side effects of antiangiogenic therapies using systemic modulation of the VSP. The fascinating parallels that become evident calls for the development of further animal models to address specific questions that could have implications in disease treatments targeting the VSP.


Assuntos
Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/fisiologia , Adulto , Animais , Homeostase/fisiologia , Humanos , Camundongos
19.
Nature ; 458(7239): 766-70, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19252478

RESUMO

Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.


Assuntos
Diferenciação Celular , Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Vetores Genéticos/genética , Células-Tronco Pluripotentes/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Elementos de DNA Transponíveis , Fibroblastos/virologia , Ordem dos Genes , Técnicas de Transferência de Genes , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Nus , Alinhamento de Sequência , Fatores de Transcrição/genética , Transgenes/genética
20.
J Biol Chem ; 282(4): 2405-22, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17110383

RESUMO

Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated.


Assuntos
Biomarcadores Tumorais , Calicreínas/metabolismo , Sequência de Aminoácidos , Animais , Cartilagem/metabolismo , Ativação Enzimática/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Imunoensaio , Calicreínas/análise , Calicreínas/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Neovascularização Patológica , Especificidade de Órgãos , Neoplasias da Próstata/sangue , Neoplasias da Próstata/enzimologia , Coelhos , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/análise , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA