Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Eng ; 17(1): 61, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784189

RESUMO

Multicomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFe2O4) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles. The physicochemical properties of the nanoparticles were analyzed by X-ray diffraction, vibrating sample magnetometer, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller. To evaluate the morphology of the nanoparticles, the field emission scanning electron microscopy with energy dispersive X-Ray spectroscopy, high-resolution transmission electron microscopy imaging, and electron tomography were conducted. Results indicate the nanoparticles have a nanoflower morphology with a mesoporous nature and a cubic spinel structure, where the rod and spherical nanoparticles became rose-like with a specific orientation. These nanoparticles were found to have minimal toxicity in human embryonic kidney 293 (HEK-293 T) cells at concentrations of 1 to 250 µg·mL-1. We also demonstrated that the nanoparticles could be used as gene nanocarriers for delivering genes to HEK-293 T cells using an external magnetic field, with optimal transfection efficiency achieved at an N/P ratio of 2.5. The study suggests that biogenic multicomponent nanocarriers show potential for safe and efficient gene delivery in cancer/gene therapy.

2.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34496359

RESUMO

Understanding underlying processes behind the simple and easily scalable graphene synthesis methods enables their large-scale deployment in the emerging energy storage and printable device applications. Microwave plasma decomposition of organic precursors forms a high-temperature environment, above 3000 K, where the process of catalyst-free dehydrogenation and consequent formation of C2molecules leads to nucleation and growth of high-quality few-layer graphene (FLG). In this work, we show experimental evidence that a high-temperature environment with a gas mixture of H2and acetylene, C2H2, leads to a transition from amorphous to highly crystalline material proving the suggested dehydrogenation mechanism. The overall conversion efficiency of carbon to FLG reached up to 47%, three times as much as for methane or ethanol, and increased with increasing microwave power (i.e. with the size of the high-temperature zone) and hydrocarbon flow rate. The yield decreased with decreasing C:H ratio while the best quality FLG (low D/G-0.5 and high 2D/G-1.5 Raman band ratio) was achieved for C:H ratio of 1:3. The structures contained less than 1 at% of oxygen. No additional hydrogen was necessary for the synthesis of FLG from higher alcohols having the same stoichiometry, 1-propanol and isopropanol, but the yield was lower, 15%, and dependent on the atom arrangement of the precursor. The prepared FLG nanopowder was analyzed by scanning electron microscopy, Raman, x-ray photoelectron spectroscopy, and thermogravimetry. Microwave plasma was monitored by optical emission spectroscopy.

3.
Nanoscale ; 11(48): 23126-23131, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793615

RESUMO

One-dimensional TiO2 nanotube layers with different dimensions were homogeneously decorated with 2D MoS2 nanosheets via atomic layer deposition and employed for liquid and gas phase photocatalysis. The 2D MoS2 nanosheets revealed a high amount of exposed active edge sites and strongly enhanced the photocatalytic performance of TiO2 nanotube layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA