Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(53): 14146-14153, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-29882367

RESUMO

Among the best-performing homogeneous catalysts for the direct amination of activated secondary alcohols with electron-poor amine derivatives, metal triflates, such as aluminum triflate, Al(OTf)3 , stand out. Herein we report the extension of this reaction to electron-rich amines and activated primary alcohols. We provide detailed insight into the structure and reactivity of the catalyst under working conditions in both nitromethane and toluene solvent, through experiment (cyclic voltammetry, conductimetry, NMR spectroscopy), and density functional theory (DFT) simulations. Competition between aniline and benzyl alcohol for Al in the two solvents explains the different reactivities. The catalyst structures predicted from the DFT calculations were validated by the experiments. Whereas a SN 1-type mechanism was found to be active in nitromethane, we propose a SN 2 mechanism in toluene to rationalize the much higher selectivity observed when using this solvent. Also, unlike what is commonly assumed in homogeneous catalysis, we show that different active species may be active instead of only one.

2.
Chemphyschem ; 12(14): 2596-2603, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22043500

RESUMO

Ground-state disulfide dissociation is a target of prime importance in structural biochemistry. A main difficulty consists in avoiding competition with carbon­sulfur and backbone scission pathways. In tandem mass spectrometry, such selectivity is afforded using transition elements or coinage-metal ions as catalyst. Yet, the underlying gas-phase mechanistic details remain poorly understood. Gold(I)-assisted disulfide cleavage is investigated by means of DFT calculations, to elucidate the highly selective and specific catalytic action of this transition-metal cation, a most promising one in tandem mass spectrometry. The preferential cleavage of sulfur­sulfur versus carbon­sulfur linkages on dimethyldisulfide, taken as a prototypical aliphatic compound, is rationalized on the basis of molecular orbital arguments. Secondly, it is revealed that the disulfide dissociation profile is dramatically impacted by a peptidic environment. Calculations on L,L-cystine derivatives show two main factors: the topological frustration for an embedded -CH(2)-S-S-CH(2)- motif induces a 5 kcal mol(-1) penalty, whereas electrophilic assistance via complexation of nitrogen and oxygen atoms lowers activation barriers by a factor of 3. S-S weakening is both thermodynamically and kinetically driven by the versatile coordination mode of gold(I). The influence of amine-terminus group protonation is finally sketched: it gives rise to an intermediate reactivity. This study sheds lights on the key action of the peptidic environment in tuning the dissociation profile in the presence of this transition-metal monocation.


Assuntos
Dissulfetos/química , Ouro/química , Peptídeos/química , Ciclização , Cistina/química , Cinética , Espectrometria de Massas em Tandem , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA