Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38693600

RESUMO

BACKGROUND: The nerve growth factor (NGF) has been previously shown to be involved in cellular proliferation, differentiation, survival, or wound healing. This factor displays a variety of biological effects that yet remain to be explored. Previous data on cell lines show a pro-inflammatory role of NGF on monocytes. OBJECTIVES: The objective of the study was to investigate the pro-inflammatory effect of NGF, using a model of fresh human monocytes. METHODS: Monocytes obtained from PBMC were exposed to NGF at various concentrations. Alternatively, monocytes were exposed to BSA, the NGF carrier protein without the NGF. Gene expression and cytokine release in the supernatant were monitored. RESULTS: We found that NGF increased the expression of pro-inflammatory, chemotactic, and remodeling genes such as interleukin (IL)-1ß, IL-6, tumor necrosis factor (TNF)-α, and C-X-C motif ligand (CXCL)8. The protein levels of CXCL8 and matrix metalloproteinase (MMP)-9 were also increased in the cell supernatants following NGF exposure. BSA alone was found to drive part of this response, bringing nuance to the inflammatory potential of the NGF. CONCLUSION: These data suggest that NGF is able to enhance monocyte inflammatory responses once cells are stimulated with another signal but is possibly not able to directly activate it. This could have implications for example in patients with bacterial infections, where NGF could worsen the local inflammation by over-activating immune cells.

2.
Biomed Pharmacother ; 174: 116552, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599061

RESUMO

AIMS: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity. METHODS AND RESULTS: NGF activates its TrkA receptor to increase Cx43 expression, phosphorylation, and localization at the plasma membrane in human pulmonary arterial smooth muscle cells, thus leading to enhanced activity of Cx43-dependent GAP junctions as shown by Lucifer Yellow dye assay transfer and fluorescence recovery after photobleaching -FRAP- experiments. Using both in vitro pharmacological and in vivo SiRNA approaches, we demonstrate that NGF-dependent increase in Cx43 expression and activity in the rat pulmonary circulation causes pulmonary artery hyperreactivity. We also show that, in a rat model of PH induced by chronic hypoxia, in vivo blockade of NGF or of its TrkA receptor significantly reduces Cx43 increased pulmonary arterial expression induced by chronic hypoxia and displays preventive effects on pulmonary arterial pressure increase and right heart hypertrophy. CONCLUSIONS: Modulation of Cx43 by NGF in pulmonary arterial smooth muscle cells contributes to NGF-induced alterations of pulmonary artery reactivity. Since NGF and its TrkA receptor play a role in vivo in Cx43 increased expression in PH induced by chronic hypoxia, these NGF/Cx43-dependent mechanisms may therefore play a significant role in human PH pathophysiology.


Assuntos
Conexina 43 , Miócitos de Músculo Liso , Fator de Crescimento Neural , Artéria Pulmonar , Animais , Humanos , Masculino , Ratos , Células Cultivadas , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/efeitos dos fármacos , Hipertensão Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Neural/metabolismo , Fosforilação , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Ratos Wistar , Receptor trkA/metabolismo
3.
Cells ; 11(15)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35954193

RESUMO

In intrapulmonary arteries (IPAs), mechanical forces due to blood flow control vessel tone, and these forces change during pulmonary hypertension (PH). Piezo1, a stretch-activated calcium channel, is a sensor of mechanical stress present in both endothelial cells (ECs) and smooth muscle cells (SMCs). The present study investigated the role of Piezo1 on IPA in the chronic hypoxia model of PH. Rats were raised in chronically hypoxic conditions for 1 (1W-CH, early stage) or 3 weeks (3W-CH, late-stage) of PH or in normoxic conditions (Nx). Immunofluorescence labeling and patch-clamping revealed the presence of Piezo1 in both ECs and SMCs. The Piezo1 agonist, Yoda1, induced an IPA contraction in Nx and 3W-CH. Conversely, Yoda1 induced an endothelial nitric oxide (eNOS) dependent relaxation in 1W-CH. In ECs, the Yoda1-mediated intracellular calcium concentration ([Ca2+]i) increase was greater in 1W-CH as compared to Nx. Yoda1 induced an EC hyperpolarization in 1W-CH. The eNOS levels were increased in 1W-CH IPA compared to Nx or 3W-CH PH and Yoda1 activated phosphorylation of Akt (Ser473) and eNOS (Ser1177). Thus, we demonstrated that endothelial Piezo1 contributes to intrapulmonary vascular relaxation by controlling endothelial [Ca2+]i, endothelial-dependent hyperpolarization, and Akt-eNOS pathway activation in the early stage of PH.


Assuntos
Hipertensão Pulmonar , Animais , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Vasoconstrição/fisiologia
4.
Nanotoxicology ; 16(1): 29-51, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35090355

RESUMO

In New Caledonia, anthropic activities, such as mining, increase the natural erosion of soils in nickel mines, which in turn, releases nickel oxide nanoparticles (NiONPs) into the atmosphere. Pulmonary vascular endothelial cells represent one of the primary targets for inhaled nanoparticles. The objective of this in vitro study was to assess the cytotoxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC). Special attention will be given to the level of oxidative stress and calcium signaling, which are involved in the physiopathology of cardiovascular diseases. HPAEC were exposed to NiONPs (0.5-150 µg/cm2) for 4 or 24 h. The following different endpoints were studied: (i) ROS production using CM-H2DCF-DA probe, electron spin resonance, and MitoSOX probe; the SOD activity was also measured (ii) calcium signaling with Fluo4-AM, Rhod-2, and Fluo4-FF probes; (iii) inflammation by IL-6 production and secretion and, (iv) mitochondrial dysfunction and apoptosis with TMRM and MitoTracker probes, and AnnexinV/PI. Our results have evidenced that NiONPs induced oxidative stress in HPAEC. This was demonstrated by an increase in ROS production and a decrease in SOD activity, the two mechanisms seem to trigger a pro-inflammatory response with IL-6 secretion. In addition, NiONPs exposure altered calcium homeostasis inducing an increased cytosolic calcium concentration ([Ca2+]i) that was significantly reduced by the extracellular calcium chelator EGTA and the TRPV4 inhibitor HC-067047. Interestingly, exposure to NiONPs also altered TRPV4 activity. Finally, HPAEC exposure to NiONPs increased intracellular levels of both ROS and calcium ([Ca2+]m) in mitochondria, leading to mitochondrial dysfunction and HPAEC apoptosis.


Assuntos
Sinalização do Cálcio , Células Endoteliais , Nanopartículas Metálicas , Mitocôndrias , Estresse Oxidativo , Canais de Cátion TRPV , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Nanopartículas Metálicas/efeitos adversos , Mitocôndrias/patologia , Níquel/efeitos adversos , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Canais de Cátion TRPV/metabolismo
5.
PLoS One ; 12(2): e0173044, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235094

RESUMO

Bronchopulmonary dysplasia (BPD) consists of an arrest of pulmonary vascular and alveolar growth, with persistent hypoplasia of the pulmonary microvasculature and alveolar simplification. In 25 to 40% of the cases, BPD is complicated by pulmonary hypertension (BPD-PH) that significantly increases the risk of morbidity. In vivo studies suggest that increased pulmonary vascular tone could contribute to late PH in BPD. Nevertheless, an alteration in vasoreactivity as well as the mechanisms involved remain to be confirmed. The purpose of this study was thus to assess changes in pulmonary vascular reactivity in a murine model of BPD-PH. Newborn Wistar rats were exposed to either room air (normoxia) or 90% O2 (hyperoxia) for 14 days. Exposure to hyperoxia induced the well-known features of BPD-PH such as elevated right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and decreased pulmonary vascular density. Intrapulmonary arteries from hyperoxic pups showed decreased endothelium-dependent relaxation to acetylcholine without any alteration of relaxation to the NO-donor sodium nitroprusside. This functional alteration was associated with a decrease of lung eNOS phosphorylation at the Ser1177 activating site. In pups exposed to hyperoxia, serotonin and phenylephrine induced exacerbated contractile responses of intrapulmonary arteries as well as intracellular calcium response in pulmonary arterial smooth muscle cells (PASMC). Moreover, the amplitude of the store-operated Ca2+ entry (SOCE), induced by store depletion using a SERCA inhibitor, was significantly greater in PASMC from hyperoxic pups. Altogether, hyperoxia-induced BPD-PH alters the pulmonary arterial reactivity, with effects on both endothelial and smooth muscle functions. Reduced activating eNOS phosphorylation and enhanced Ca2+ signaling likely account for alterations of pulmonary arterial reactivity.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Sinalização do Cálcio , Hipertensão Pulmonar/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Processamento de Proteína Pós-Traducional , Acetilcolina/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Hiperóxia/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Fosforilação , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos Wistar , Vasodilatação , Vasodilatadores/farmacologia
6.
Pharmacol Ther ; 164: 105-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126473

RESUMO

Connexins are transmembrane proteins that can generate intercellular communication channels known as gap junctions. They contribute to the direct movement of ions and larger cytoplasmic solutes between various cell types. In the lung, connexins participate in a variety of physiological functions, such as tissue homeostasis and host defence. In addition, emerging evidence supports a role for connexins in various pulmonary inflammatory diseases, such as asthma, pulmonary hypertension, acute lung injury, lung fibrosis or cystic fibrosis. In these diseases, the altered expression of connexins leads to disruption of normal intercellular communication pathways, thus contributing to various pathophysiological aspects, such as inflammation or tissue altered reactivity and remodeling. The present review describes connexin structure and organization in gap junctions. It focuses on connexins in the lung, including pulmonary bronchial and arterial beds, by looking at their expression, regulation and physiological functions. This work also addresses the issue of connexin expression alteration in various pulmonary inflammatory diseases and describes how targeting connexin-based gap junctions with pharmacological tools, synthetic blocking peptides or genetic approaches, may open new therapeutic perspectives in the treatment of these diseases.


Assuntos
Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Pneumopatias/fisiopatologia , Animais , Comunicação Celular/fisiologia , Modelos Animais de Doenças , Ácido Glicirretínico/farmacologia , Humanos , Inflamação/fisiopatologia , Pulmão/fisiopatologia , Fosforilação/fisiologia , Artéria Pulmonar/fisiopatologia , Fibrose Pulmonar/fisiopatologia
7.
Int J Biochem Cell Biol ; 55: 93-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149415

RESUMO

Mitochondria are essential cell organelles responsible for ATP production in the presence of oxygen. In the pulmonary vasculature, mitochondria contribute to physiological intracellular signalling pathways through production of reactive oxygen species and play the role of oxygen sensors that coordinate hypoxic pulmonary vasoconstriction. Mitochondria also play a pathophysiological role in pulmonary hypertension (PH). This disease is characterized by increased pulmonary arterial pressure and remodelling of pulmonary arteries, leading to increased pulmonary vascular resistance, hypertrophy of the right ventricle, right heart failure and ultimately death. Mitochondrial alterations have been evidenced in PH in pulmonary arteries and in the right ventricle, in particular a chronic shift in energy production from mitochondrial oxidative phosphorylation to glycolysis. This shift, initially described in cancer cells, may play a central role in PH pathogenesis. Further studies of these metabolic mitochondrial alterations in PH may therefore open new therapeutic perspectives in this disease.


Assuntos
Glicólise , Mitocôndrias/metabolismo , Artéria Pulmonar/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Hipertrofia Ventricular Direita/metabolismo , Modelos Biológicos , Oxirredução , Fosforilação Oxidativa
8.
Brain Dev ; 33(6): 525-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20817433

RESUMO

Benign nocturnal alternating hemiplegia (BNAH) of childhood is distinct from the classic form of malignant alternating hemiplegia of childhood [1]. It is characterized by hemiplegic attacks occurring exclusively during sleep [2]. It can be misdiagnosed as migraine, nocturnal frontal lobe epilepsy, benign rolandic epilepsy, Panayiotopoulos syndrome, or sleep-related movement disorder [1-4]. Only nine patients have been described to date, with typically, a normal development [1,5-7]. In order to insist about the benignity of the affection, we report two cases: a new three-year-old boy suffering from BNAH and a patient already published to show positive evolution at fourteen years of age. BNAH is a rare disorder but may be underdiagnosed. Making an early diagnosis can help to describe to the parents the good prognosis without treatment.


Assuntos
Hemiplegia/diagnóstico , Hemiplegia/fisiopatologia , Transtornos do Sono-Vigília/diagnóstico , Transtornos do Sono-Vigília/fisiopatologia , Adolescente , Pré-Escolar , Progressão da Doença , Humanos , Masculino
9.
Am J Respir Crit Care Med ; 180(11): 1042-7, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19729665

RESUMO

RATIONALE: Cough is the most frequent reason for consultation with a family doctor, or with a general or respiratory physician. Treatment options are limited and one meta-analysis concluded that over-the-counter remedies are ineffective. There is also increasing concern about their use in children. Environmental irritants such as air pollution and cigarette smoke are thought to evoke cough by stimulating airway sensory nerves; however, how this occurs is not fully understood. OBJECTIVES: We hypothesized that the TRPA1 (transient receptor potential cation channel, subfamily A, member 1) receptor may have a role as a novel target for tussive agents given that many potential irritants have been shown to activate this channel. METHODS: We investigated the effect of TRPA1 ligands on vagal sensory nerve activity in vitro and in guinea pig and human tussive challenge models. MEASUREMENTS AND MAIN RESULTS: We demonstrated that TRPA1 agonists such as acrolein activate cloned human TRPA1 channels in HEK293 cells and also vagal sensory nerves in murine, guinea pig, and human tissues. A role for TRPA1 was confirmed, using specific inhibitors and tissue from Trpa1(-/-) gene-deleted animals. Finally, TRPA1 ligands evoked reproducible tussive responses in both a guinea pig model and normal volunteers. CONCLUSIONS: This study identifies the TRPA1 receptor as a promiscuous receptor, activated by a wide range of stimuli, making it a perfect target for triggering cough and as such one of the most promising targets currently identified for the development of antitussive drugs.


Assuntos
Canais de Cálcio/metabolismo , Tosse/etiologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Acroleína/farmacologia , Adulto , Animais , Canais de Cálcio/efeitos dos fármacos , Tosse/fisiopatologia , Modelos Animais de Doenças , Cobaias , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Nervo Vago/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1783(10): 1964-71, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18573284

RESUMO

Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.


Assuntos
Regulação Enzimológica da Expressão Gênica , Pulmão/metabolismo , Miócitos de Músculo Liso/enzimologia , Receptor trkA/metabolismo , Células Cultivadas , Clatrina/metabolismo , Ativação Enzimática , Humanos , Lisossomos/enzimologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Transporte Proteico , RNA Mensageiro/genética , Receptor trkA/genética
11.
Pediatr Neurosurg ; 43(2): 130-3, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17337926

RESUMO

An 11-year-old boy developed catastrophic occipital lobe epilepsy with progressive neurocognitive decline which led to surgical treatment. Pathological examination of the resected epileptic area showed chronic inflammatory changes. Surgery was followed by a subacute and regressive encephalopathy although the patient did not suffer further seizures. We suggest that this occipital lobe epilepsy was related to chronic nonprogressive encephalitis consistent with a variant of Rasmussen's syndrome, and that the immune and/or inflammatory process was reactivated by surgery. This case indicates that there is no direct link between the epileptic and the encephalitic processes.


Assuntos
Encefalite/cirurgia , Epilepsias Parciais/cirurgia , Calcinose/diagnóstico , Calcinose/patologia , Calcinose/cirurgia , Criança , Doença Crônica , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/cirurgia , Diagnóstico Diferencial , Encefalite/diagnóstico , Encefalite/patologia , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/patologia , Humanos , Linfocitose/patologia , Imageamento por Ressonância Magnética , Masculino , Microglia/patologia , Lobo Occipital/patologia , Lobo Occipital/cirurgia , Complicações Pós-Operatórias/diagnóstico , Tomografia Computadorizada por Raios X
12.
Cell Signal ; 18(5): 621-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16091303

RESUMO

NGF may play a role in airway inflammation and hyperresponsiveness. We studied its possible involvement in airway remodelling and report here its proliferative effect and its receptor and signalling pathways in human airway smooth muscle cells in culture (HASMC). Proliferation of HASMC induced by NGF (0.1-10 pM) was assessed by the XTT and BrdU techniques with and without kinase inhibitors. Immunoprecipitation and Western blotting were used to study phosphorylation of TrkA and MAPK. NGF caused dose-dependent proliferation of HASMC and induced TrkA phosphorylation, both abolished by the tyrosine-kinase inhibitor K252a. PI3K and JNK inhibitors had no effect. PKC inhibitors partially inhibited NGF-induced proliferation and totally abolished p38 phosphorylation but did not affect ERK1/2 phosphorylation. The rafK inhibitor decreased NGF-induced proliferation, and totally abolished ERK1/2 phosphorylation, but did not affect p38 phosphorylation. This finding was confirmed by the decrease of NGF-induced proliferation after treatment with inhibitors of the p38 or of ERK1/2 pathways. In conclusion, NGF activation of the TrkA receptor involves two distinct signalling pathways: PKC selectively activates p38, and the ras/raf pathway selectively activates ERK1/2. Both are necessary to induce HASMC proliferation.


Assuntos
Proliferação de Células , Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Receptor trkA/metabolismo , Sistema Respiratório/anatomia & histologia , Transdução de Sinais/fisiologia , Células Cultivadas , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA