Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36358353

RESUMO

Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions.

2.
Theranostics ; 10(1): 398-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903128

RESUMO

Non-invasive imaging of ß-cells represents a desirable preclinical and clinical tool to monitor the change of ß-cell mass and the loss of function during pre-diabetic stages. Although it is widely accepted that manganese (Mn) ions are actively gated by voltage-dependent calcium channels (VDCC) in response to glucose metabolism, little is known on its specificity in vivo for quantification of islet ß-cell function using Mn and magnetic resonance imaging (MRI). On the other hand, glucagon-like-peptide-1 receptor (GLP-1R) represents a validated target for the estimation of ß-cell mass using radiolabeled exendin-4 (Ex4) and positron emission tomography (PET). However, a multiparametric imaging workflow revealing ß-cell mass and function quantitatively is still missing. Methods: We developed a simultaneous PET/MRI protocol to comprehensively quantify in vivo changes in ß-cell mass and function by targeting, respectively, GLP-1R and VDCC coupled with insulin secretion. Differences in the spatial distribution of Mn and radiolabeled Ex4 were monitored overtime in native and transgenic pancreata, characterized by spontaneous pancreatic neuroendocrine tumor development. Follow-up with mass spectrometry imaging (MSI) and autoradiography allowed the ex vivo validation of the specificity of Mn and PET tracer uptake and the detection of endogenous biometals, such as calcium and zinc, throughout the endocrine and exocrine pancreas. Results: Our in vivo data based on a volumetric PET/MRI readout for native pancreata and insulinomas connects uptake of Mn measured at early imaging time points to high non-specific binding by the exocrine tissue, while specific retention was only found 24 h post injection. These results are supported by cross-validation of the spatial distribution of exogenous 55Mn and endogenous 44Ca and 64Zn as well with the specific internalization of the radiolabeled peptide targeting GLP-1R. Conclusion: Simultaneous PET/MR imaging of the pancreas enabled the comprehensive in vivo quantification of ß-cell function and mass using Mn and radiolabeled Ex4. Most important, our data revealed that only late time-point measurements reflect the Mn uptake in the islet ß-cells, while early time points detect non-specific accumulation of Mn in the exocrine pancreas.


Assuntos
Células Secretoras de Insulina , Imageamento por Ressonância Magnética , Pâncreas , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Canais de Cálcio/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/ultraestrutura , Manganês/química , Camundongos , Camundongos Transgênicos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Compostos Radiofarmacêuticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA