Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35744511

RESUMO

Liquid biopsy has been adapted as a diagnostic test for EGFR mutations in patients with advanced or metastatic non-small cell lung cancer (NSCLC). Loop-mediated isothermal amplification (LAMP) has been widely used for the rapid detection of pathogens through DNA amplification. This study investigated the efficacy of an EGFR-LAMP assay using plasma samples of patients with resected NSCLC tumors. The EGFR status was investigated using both LAMP and next-generation sequencing (NGS) assays in cases that met the following criteria: (1) pulmonary adenocarcinoma with EGFR mutation detected by the Therascreen EGFR PCR Kit and (2) preoperative plasma samples contained enough DNA for the LAMP and NGS experiments. Among 51 specimens from patients with EGFR-mutated tumors or metastatic lymph nodes, the LAMP assay detected 1 EGFR mutation that was also detected in the NGS assay. However, a plasma sample that demonstrated EGFR wild type in the LAMP assay showed an EGFR mutant status in NGS. The detection rates (1.9% in LAMP and 3.9% in NGS) were very low in both assays, demonstrating a similar performance in detecting EGFR mutations in NSCLC tumors; therefore, it could be a more suitable test for the advanced stage, not the early stage. Notably, the LAMP assay was more time-saving, cost-effective, and straightforward. However, further investigation is required to develop a more sensitive assay.

2.
J Thorac Dis ; 13(2): 743-753, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33717546

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) mutations are important biomarkers in the treatment of patients with advanced or metastatic diseases. The therascreen EGFR Rotor-Gene Q (RGQ) PCR Kit® (Qiagen, Inc.) is an approved diagnostic test for EGFR mutations in non-small cell lung cancer (NSCLC). This study aims to investigate the diagnostic capability of a loop-mediated isothermal amplification (LAMP) assay as an accurate, efficient, and cost-effective alternative to the therascreen assay. METHODS: EGFR mutations were investigated by LAMP and therascreen assays using tissue samples that were surgically resected or biopsied from 117 consecutive patients with NSCLC tumors. The EGFR status from the LAMP assay was compared with that of the therascreen assay. Next-generation sequencing (NGS) was performed to confirm EGFR status of tumors that did not match in both assays. To establish an optimal LAMP AUC value, receiver operating characteristics (ROC) curve analysis was performed within tumors with exon 19 deletion or L858R point mutation. RESULTS: Of the 117 tumors assayed, 45 tumors with EGFR mutations and 68 tumors with EGFR wild type were matched in both assays, four tumors having mismatched EGFR statuses. NGS further confirmed that two of the four discordant tumors had the same EGFR status that was determined by the LAMP assay. The AUC values were 0.973 (95% CI: 0.929-1.00) in exon 19 deletion, and 0.952 (95% CI: 0.885-1.00) in L858R point mutation. In exon 19 deletion, sensitivity, specificity, and accuracy were 89.3%, 98.9%, and 96.6%, respectively, and 94.7%, 95.9%, and 95.7%, respectively, in L858R using AUC value of 0.222. CONCLUSIONS: The LAMP assay compared favorably with the therascreen assay and has potential as an effective, simple, rapid, and low-cost diagnostic alternative. Based on these results, a liquid biopsy LAMP system should be developed for point-of-care testing of oncogenes in the near future.

3.
Biosci Biotechnol Biochem ; 85(2): 359-368, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604636

RESUMO

Personalized peptide vaccination, which involves activation of the host immune system against cancer cells using personalized peptide vaccines (PPVs), can improve overall survival in multiple cancer types. However, the clinical efficacies of PPVs vary for unknown reasons. Recently, a single nucleotide polymorphism (NG_012651.1:g.4461_5460[4960A>G]) in the haptoglobin promoter region, rs5472, was significantly associated with clinical response of PPV. Therefore, rs5472 is expected to be a predictive biomarker for PPV therapy. Here, we described a single nucleotide discrimination method for rs5472 analysis by combining the loop-mediated isothermal amplification and quenching probe methods. In evaluation of saliva samples, this method showed high concordance with the results of Sanger sequencing (100%, n = 36). Importantly, this method did not require calculation of melting temperature for single nucleotide discrimination and could therefore be carried out on a simple instrument. Accordingly, this method may be more robust and applicable to near-patient testing.


Assuntos
Corantes Fluorescentes/metabolismo , Haptoglobinas/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Humanos , Saliva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA