Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 28(10): 1460-1473.e15, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34015309

RESUMO

Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well-characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.


Assuntos
Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica , Dineínas/química , Dineínas/genética , Humanos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Pirazóis/química , Pirazóis/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Biophys J ; 120(6): 1020-1030, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33340543

RESUMO

The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.


Assuntos
DNA Viral/metabolismo , Metiltransferases/metabolismo , RNA Helicases/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/metabolismo , Trifosfato de Adenosina/farmacologia , Fenômenos Biomecânicos , Imagem Individual de Molécula
3.
Curr Biol ; 30(18): 3664-3671.e4, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32735815

RESUMO

Kinesin-14s are microtubule-based motor proteins that play important roles in mitotic spindle assembly [1]. Ncd-type kinesin-14s are a subset of kinesin-14 motors that exist as homodimers with an N-terminal microtubule-binding tail, a coiled-coil central stalk (central stalk), a neck, and two identical C-terminal motor domains. To date, no Ncd-type kinesin-14 has been found to naturally exhibit long-distance minus-end-directed processive motility on single microtubules as individual homodimers. Here, we show that GiKIN14a from Giardia intestinalis [2] is an unconventional Ncd-type kinesin-14 that uses its N-terminal microtubule-binding tail to achieve minus-end-directed processivity on single microtubules over micrometer distances as a homodimer. We further find that although truncation of the N-terminal tail greatly reduces GiKIN14a processivity, the resulting tailless construct GiKIN14a-Δtail is still a minimally processive motor and moves its center of mass via discrete 8-nm steps on the microtubule. In addition, full-length GiKIN14a has significantly higher stepping and ATP hydrolysis rates than does GiKIN14a-Δtail. Inserting a flexible polypeptide linker into the central stalk of full-length GiKIN14a nearly reduces its ATP hydrolysis rate to that of GiKIN14a-Δtail. Collectively, our results reveal that the N-terminal tail of GiKIN14a is a de facto dual regulator of motility and reinforce the notion of the central stalk as a key mechanical determinant of kinesin-14 motility [3].


Assuntos
Trifosfato de Adenosina/metabolismo , Giardia/fisiologia , Cinesinas/metabolismo , Microtúbulos/fisiologia , Atividade Motora , Cinesinas/genética , Multimerização Proteica
4.
Proc Natl Acad Sci U S A ; 117(31): 18459-18469, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32694211

RESUMO

Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , ATPases Associadas a Diversas Atividades Celulares/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínios Proteicos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Biophys J ; 117(2): 331-345, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31301807

RESUMO

High-resolution tracking of gold nanoparticle-labeled proteins has emerged as a powerful technique for measuring the structural kinetics of processive enzymes and other biomacromolecules. These techniques use point spread function (PSF) fitting methods borrowed from single-molecule fluorescence imaging to determine molecular positions below the diffraction limit. However, compared to fluorescence, gold nanoparticle tracking experiments are performed at significantly higher frame rates and utilize much larger probes. In the current work, we use Brownian dynamics simulations of nanoparticle-labeled proteins to investigate the regimes in which the fundamental assumptions of PSF fitting hold and where they begin to break down. We find that because gold nanoparticles undergo tethered diffusion around their anchor point, PSF fitting cannot be extended to arbitrarily fast frame rates. Instead, camera exposure times that allow the nanoparticle to fully populate its stationary positional distribution achieve a spatial averaging that increases fitting precision. We furthermore find that changes in the rotational freedom of the tagged protein can lead to artifactual translations in the fitted particle position. Finally, we apply these lessons to dissect a standing controversy in the kinesin field over the structure of a dimer in the ATP waiting state. Combining new experiments with simulations, we determine that the rear kinesin head in the ATP waiting state is unbound but not displaced from its previous microtubule binding site and that apparent differences in separately published reports were simply due to differences in the gold nanoparticle attachment position. Our results highlight the importance of gold conjugation decisions and imaging parameters to high-resolution tracking results and will serve as a useful guide for the design of future gold nanoparticle tracking experiments.


Assuntos
Simulação por Computador , Ouro/química , Cinesinas/química , Nanopartículas Metálicas/química , Proteínas Motores Moleculares/química , Coloração e Rotulagem , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Drosophila , Fótons , Rotação
6.
Methods Mol Biol ; 1805: 123-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29971716

RESUMO

This chapter describes methods for high-speed, unloaded, in vitro single-molecule kinesin tracking experiments. Instructions are presented for constructing a total internal reflection dark-field microscope (TIRDFM) and labeling motors with gold nanoparticles. An AMP-PNP unlocking assay is introduced as a specialized means of capturing processive events in a reduced field of view. Finally, step-finding tools for analyzing high frame-rate tracking data are described.


Assuntos
Bioensaio/métodos , Cinesinas/metabolismo , Imagem Individual de Molécula/métodos , Adenilil Imidodifosfato/metabolismo , Animais , Calibragem , Bovinos , Análise de Dados , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo
7.
Biophys J ; 112(12): 2615-2623, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636917

RESUMO

Kinesin processivity, defined as the average number of steps that occur per interaction with a microtubule, is an important biophysical determinant of the motor's intracellular capabilities. Despite its fundamental importance to the diversity of tasks that kinesins carry out in cells, no existing quantitative model fully explains how structural differences between kinesins alter kinetic rates in the ATPase cycle to produce functional changes in processivity. Here we use high-resolution single-molecule microscopy to directly observe the stepping behavior of kinesin-1 and -2 family motors with different length neck-linker domains. We characterize a one-head-bound posthydrolysis vulnerable state where a kinetic race occurs between attachment of the tethered head to its next binding site and detachment of the bound head from the microtubule. We find that greater processivity is correlated with faster attachment of the tethered head from this vulnerable state. In compliment, we show that slowing detachment from this vulnerable state by strengthening motor-microtubule electrostatic interactions also increases processivity. Furthermore, we provide evidence that attachment of the tethered head is irreversible, suggesting a first passage model for exit from the vulnerable state. Overall, our results provide a kinetic framework for explaining kinesin processivity and for mapping structural differences to functional differences in diverse kinesin isoforms.


Assuntos
Proteínas de Drosophila/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Escherichia coli , Humanos , Hidrólise , Cinesinas/química , Cinesinas/genética , Cinética , Microtúbulos/química , Modelos Moleculares , Ligação Proteica , Imagem Individual de Molécula , Solventes/química , Eletricidade Estática
8.
J Biol Chem ; 291(39): 20283-20294, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27402829

RESUMO

Single-molecule microscopy and stopped-flow kinetics assays were carried out to understand the microtubule polymerase activity of kinesin-5 (Eg5). Four lines of evidence argue that the motor primarily resides in a two-heads-bound (2HB) state. First, upon microtubule binding, dimeric Eg5 releases both bound ADPs. Second, microtubule dissociation in saturating ADP is 20-fold slower for the dimer than for the monomer. Third, ATP-triggered mant-ADP release is 5-fold faster than the stepping rate. Fourth, ATP binding is relatively fast when the motor is locked in a 2HB state. Shortening the neck-linker does not facilitate rear-head detachment, suggesting a minimal role for rear-head-gating. This 2HB state may enable Eg5 to stabilize incoming tubulin at the growing microtubule plus-end. The finding that slowly hydrolyzable ATP analogs trigger slower nucleotide release than ATP suggests that ATP hydrolysis in the bound head precedes stepping by the tethered head, leading to a mechanochemical cycle in which processivity is determined by the race between unbinding of the bound head and attachment of the tethered head.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Cinesinas/química , Proteínas de Xenopus/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Hidrólise , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos , Domínios Proteicos , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 112(52): E7186-93, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26676576

RESUMO

To dissect the kinetics of structural transitions underlying the stepping cycle of kinesin-1 at physiological ATP, we used interferometric scattering microscopy to track the position of gold nanoparticles attached to individual motor domains in processively stepping dimers. Labeled heads resided stably at positions 16.4 nm apart, corresponding to a microtubule-bound state, and at a previously unseen intermediate position, corresponding to a tethered state. The chemical transitions underlying these structural transitions were identified by varying nucleotide conditions and carrying out parallel stopped-flow kinetics assays. At saturating ATP, kinesin-1 spends half of each stepping cycle with one head bound, specifying a structural state for each of two rate-limiting transitions. Analysis of stepping kinetics in varying nucleotides shows that ATP binding is required to properly enter the one-head-bound state, and hydrolysis is necessary to exit it at a physiological rate. These transitions differ from the standard model in which ATP binding drives full docking of the flexible neck linker domain of the motor. Thus, this work defines a consensus sequence of mechanochemical transitions that can be used to understand functional diversity across the kinesin superfamily.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Drosophila/química , Cinesinas/química , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Proteínas de Drosophila/metabolismo , Hidrólise , Cinesinas/metabolismo , Cinética , Microscopia de Interferência , Modelos Químicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA