Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35454121

RESUMO

Epidemiological evidence indicates that stress and aversive psychological conditions can affect cancer progression, while well-being protects against it. Although a large set of studies have addressed the impact of stress on cancer, not much is known about the mechanisms that protect from cancer in healthy psychological conditions. C57BL/6J mouse pups were exposed to an environmental enrichment condition consisting of being raised until weaning by the biological lactating mother plus a non-lactating virgin female (LnL = Lactating and non-Lactating mothers). The Control group consisted of mice raised by a single lactating mother (L = Lactating). Four months after weaning, mice from LnL and L conditions were exposed to intramuscular injection of 3-methylcolantrene (3MCA), a potent tumorigenic drug, and onset and progression of 3MCA-induced fibrosarcomas were monitored over time. Pups from the LnL compared to the L group received more parental care and were more resilient to stressful events during the first week of life. In association, the onset of tumors in LnL adults was significantly delayed. At the molecular level, we observed increased levels of wild-type p53 protein in tumor samples of LnL compared to L adults and higher levels of its target p21 in healthy muscles of LnL mice compared to the L group, supporting the hypothesis of potential involvement of p53 in tumor development. Our study sustains the model that early life care protects against tumor susceptibility.


Assuntos
Carcinogênese , Meio Social , Proteína Supressora de Tumor p53 , Animais , Feminino , Lactação , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética
2.
Brain Struct Funct ; 222(9): 3889-3898, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28478549

RESUMO

Degradation of the chondroitin sulfate proteoglycans of the extracellular matrix (ECM) by injections of the bacterial enzyme chondroitinase ABC (ChABC) in the basolateral amygdala (BLA) does not impair fear memory formation but accelerates its extinction and disrupts its reactivation. These observations suggest that the treatment might selectively interfere with the post-extinction features of neurons that mediate the reinstatement of fear. Here, we report that ChABC mice show regular fear memory and memory-driven c-fos activation and dendritic spine formation in the BLA. These mice then rapidly extinguish their fear response and exhibit a post-extinction concurrent reduction in c-fos activation and large dendritic spines that extends to the anterior cingulate cortex 7 days later. At this remote time point, fear renewal and fear retrieval are impaired. These findings show that a non-cellular component of the brain tissue controls post-extinction levels of neuronal activity and spine enlargement in the regions sequentially remodelled during the formation of recent and remote fear memory. By preventing BLA and aCC neurons to retain neuronal features that serve to reactivate an extinguished fear memory, ECM digestion might offer a therapeutic strategy for durable attenuation of traumatic memories.


Assuntos
Matriz Extracelular/metabolismo , Medo , Neurônios/ultraestrutura , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condroitina ABC Liase/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Matriz Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Lectinas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de N-Acetilglucosamina/metabolismo , Coloração pela Prata
3.
Neural Plast ; 2017: 5281829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29435372

RESUMO

Neuronal activity has a strong causal role in the production and release of the neurotoxic ß-amyloid peptide (Aß). Because of this close link, gradual accumulation of Aß into amyloid plaques has been reported in brain areas with intense neuronal activity, including cortical regions that display elevated activation at resting state. However, the link between Aß and activity is not always linear and recent studies report exceptions to the view of "more activity, more plaques." Here, we review the literature about the activity-dependent production of Aß in both human cases and AD models and focus on the evidences that brain regions with elevated convergence of synaptic connections (herein referred to as brain nodes) are particularly vulnerable to Aß accumulation. Next, we will examine data supporting the hypothesis that, since Aß is released from synaptic terminals, ß-amyloidosis can spread in AD brain by advancing through synaptically connected regions, which makes brain nodes vulnerable to Aß accumulation. Finally, we consider possible mechanisms that account for ß-amyloidosis progression through synaptically linked regions.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Amiloidose/complicações , Animais , Humanos , Placa Amiloide/complicações , Placa Amiloide/metabolismo , Transmissão Sináptica
4.
Neuro Oncol ; 18(12): 1634-1643, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27298309

RESUMO

BACKGROUND: Glioblastomas are the most aggressive type of brain tumor. A successful treatment should aim at halting tumor growth and protecting neuronal cells to prevent functional deficits and cognitive deterioration. Here, we exploited a Rho GTPase-activating bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1), to interfere with glioma cell growth in vitro and vivo. We also investigated whether this toxin spares neuron structure and function in peritumoral areas. METHODS: We performed a microarray transcriptomic and in-depth proteomic analysis to characterize the molecular changes triggered by CNF1 in glioma cells. We also examined tumor cell senescence and growth in vehicle- and CNF1-treated glioma-bearing mice. Electrophysiological and morphological techniques were used to investigate neuronal alterations in peritumoral cortical areas. RESULTS: Administration of CNF1 triggered molecular and morphological hallmarks of senescence in mouse and human glioma cells in vitro. CNF1 treatment in vivo induced glioma cell senescence and potently reduced tumor volumes. In peritumoral areas of glioma-bearing mice, neurons showed a shrunken dendritic arbor and severe functional alterations such as increased spontaneous activity and reduced visual responsiveness. CNF1 treatment enhanced dendritic length and improved several physiological properties of pyramidal neurons, demonstrating functional preservation of the cortical network. CONCLUSIONS: Our findings demonstrate that CNF1 reduces glioma volume while at the same time maintaining the physiological and structural properties of peritumoral neurons. These data indicate a promising strategy for the development of more effective antiglioma therapies.


Assuntos
Toxinas Bacterianas/administração & dosagem , Neoplasias Encefálicas/fisiopatologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas Ativadoras de GTPase/metabolismo , Glioblastoma/fisiopatologia , Neurônios/fisiologia , Animais , Toxinas Bacterianas/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Eletrofisiologia , Proteínas de Escherichia coli/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Proteômica , Transcriptoma
5.
Neuropharmacology ; 66: 339-47, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22709946

RESUMO

Alterations of the glutamatergic system have been implicated in the pathophysiology and treatment of major depression. In order to investigate the expression and function of mGlu5 receptors in an animal model for treatment-resistant depression we used rats bred for congenital learned helplessness (cLH) and the control strain, bred for resistance against inescapable stress, congenitally. not learned helpless rats (cNLH). Western blot analysis showed an increased expression of mGlu5 (but not mGlu1a) receptors in the hippocampus of cLH rats, as compared with control cNLH rats. We also examined mGlu1/5 receptor signaling by in vivo measurement of DHPG-stimulated polyphosphoinositides hydrolysis. Stimulation of (3)H-inositolmonophosphate formation induced by i.c.v. injection of DHPG was enhanced by about 50% in the hippocampus of cLH rats. Correspondingly, DHPG-induced long-term depression (LTD) at Schaffer collateral/CA1 pyramidal cell synapses was amplified in hippocampal slices of cLH rats, whereas LTD induced by low frequency stimulation of the Schaffer collaterals did not change. Moreover, these effects were associated with decreased basal dendritic spine density of CA1 pyramidal cell in cLH rats. These data raise the attractive possibility that changes in the expression and function of mGlu5 receptors in the hippocampus might underlie the changes in synaptic plasticity associated with the depressive-like phenotype of cLH rats. However, chronic treatment of cLH rats with MPEP did not reverse learned helplessness, indicating that the enhanced mGlu5 receptor function is not the only player in the behavioral phenotype of this genetic model of depression. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.


Assuntos
Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/fisiologia , Desamparo Aprendido , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA3 Hipocampal/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Estimulação Elétrica/métodos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hidrólise/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Fosfatos de Fosfatidilinositol/metabolismo , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/biossíntese , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
6.
Biol Psychiatry ; 67(2): 146-54, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19892321

RESUMO

BACKGROUND: Antidepressants (AD) need to be chronically administered (weeks to months) to provide beneficial effects. Evidence suggests that combined administration of inhibitors of monoamine reuptake and phosphodiesterase type 4 allows a highly effective therapeutic action. Also, this coadministration more rapidly boosts the cyclic adenosine monophosphate (cAMP) pathway, which is normally activated during chronic treatment of single compounds. Little is known, however, about how this augmentation therapy affects the core mechanism of glutamatergic plasticity. We therefore investigated how in vivo combinational subchronic rolipram and imipramine (scRI) treatment affects depressive behavior, cAMP-dependent transcription, and glutamatergic transmission in the hippocampus, a region critically implicated in depression. METHODS: Antidepressant properties of scRI were investigated through the forced swim test. Changes in cAMP-dependent transcription and synaptic transmission of CA1 pyramidal cells were explored with green fluorescent protein, enzyme-linked immunosorbent assay, electrophysiology recordings, and Golgi-Cox staining. RESULTS: We demonstrate that scRI displays robust antidepressant properties compared with single-drug treatments and increases hippocampal c-Fos expression and brain-derived neurotrophic factor protein levels. These effects are accompanied by a specific increase in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in already existing synapses. Finally, both acute and subchronic treatments led to enhancement of long-term potentiation but differently affected spine density and morphology, with scRI administration specifically resulting in a large increase in stubby spines. CONCLUSIONS: We conclude that scRI is highly effective in providing antidepressive effects, including the hippocampal transcriptional alterations normally observed with longer single-drug treatments. Furthermore, we identified scRI-induced modifications in glutamatergic transmission that probably underlie the beneficial action of this combinational therapy.


Assuntos
Antidepressivos/farmacologia , Região CA1 Hipocampal/citologia , Imipramina/farmacologia , Células Piramidais/efeitos dos fármacos , Rolipram/farmacologia , Sinapses/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/patologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Combinação de Medicamentos , Estimulação Elétrica/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Reação de Fuga/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde , Resposta de Imobilidade Tônica/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar , Natação , Transmissão Sináptica/efeitos dos fármacos
7.
Hippocampus ; 12(1): 63-75, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11918290

RESUMO

C57 and DBA mice were trained in a crossed maze to assess possible strain differences in place or response learning as a function of training duration (8 or 17 days) and extramaze cueing conditions. The first condition consisted of a diffuse visually cued environment (rich cueing). The second was the same plus an explicit visual cue marking the direction of the baited arm (rich cueing plus cue). The third was a featureless environment (poor cueing). During training, mice were released from the south arm and rewarded in the east arm. Probe trials on which mice were released from the north arm and allowed to choose either the east (place learning) or the west (response learning) arm were given either on the ninth (PT1) or the eighteenth (PT2) days. Strain x context differences in the activation of the dorsal hippocampus and the dorsolateral striatum were examined by analyzing Fos expression following each probe trial. Results first showed that C57 were essentially place-learners, whereas no learning modality was predominant in DBA, except on the PT2 run with the explicit cue available. Examination of Fos expression in C57 trained under "rich cueing" and "rich cueing plus cue" conditions revealed a strong and parallel increase of immunoreactivity in the hippocampus and dorsolateral striatum following PT1 that decreased under PT2. In that strain, the similar time-course variation of Fos expression in both areas suggests a simultaneous involvement of hippocampal- and striatal-based learning mechanisms, even if those controlled by the hippocampus were prevailing on those controlled by the dorsolateral striatum. In DBA mice, however, the absence of any preferential learning modality was associated with 1) a consistent hippocampal activation persistent across probe trials, and 2) a global superior activation of the dorsolateral striatum. Distinct patterns of Fos expression were therefore associated with every strain-specific learning modality. In each strain, however, each modality was found to be remarkably stable, whatever the training duration and the cueing conditions.


Assuntos
Corpo Estriado/fisiologia , Hipocampo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Animais , Expressão Gênica , Genes fos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Proto-Oncogênicas c-fos/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA