Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(17): e2309271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368258

RESUMO

Well-defined nanostructures are crucial for precisely understanding nano-bio interactions. However, nanoparticles (NPs) fabricated through conventional synthesis approaches often lack poor controllability and reproducibility. Herein, a synthetic biology-based strategy is introduced to fabricate uniformly reproducible protein-based NPs, achieving precise control over heterogeneous components of the NPs. Specifically, a ferritin assembly toolbox system is developed that enables intracellular assembly of ferritin subunits/variants in Escherichia coli. Using this strategy, a proof-of-concept study is provided to explore the interplay between ligand density of NPs and their tumor targets/penetration. Various ferritin hybrid nanocages (FHn) containing human ferritin heavy chains (FH) and light chains are accurately assembled, leveraging their intrinsic binding with tumor cells and prolonged circulation time in blood, respectively. Further studies reveal that tumor cell uptake is FH density-dependent through active binding with transferrin receptor 1, whereas in vivo tumor accumulation and tissue penetration are found to be correlated to heterogeneous assembly of FHn and vascular permeability of tumors. Densities of 3.7 FH/100 nm2 on the nanoparticle surface exhibit the highest degree of tumor accumulation and penetration, particularly in tumors with high permeability compared to those with low permeability. This study underscores the significance of nanoparticle heterogeneity in determining particle fate in biological systems.


Assuntos
Ferritinas , Nanopartículas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ferritinas/metabolismo , Ferritinas/química , Nanopartículas/química , Nanopartículas/metabolismo , Nanoestruturas/química , Neoplasias/metabolismo , Feminino , Camundongos Endogâmicos BALB C
2.
Biomolecules ; 13(8)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627244

RESUMO

Myofibroblasts are the principal effector cells driving fibrosis, and their accumulation in tissues is a fundamental feature of fibrosis. Essential pathways have been identified as being central to promoting myofibroblast differentiation, revealing multiple targets for intervention. Compared with large proteins and antibodies, peptide-based therapies have transpired to serve as biocompatible and cost-effective solutions to exert biomimicry, agonistic, and antagonistic activities with a high degree of targeting specificity and selectivity. In this review, we summarize emergent antifibrotic peptides and their utilization for the targeted prevention of myofibroblasts. We then highlight recent studies on peptide inhibitors of upstream pathogenic processes that drive the formation of profibrotic cell phenotypes. We also briefly discuss peptides from non-mammalian origins that show promise as antifibrotic therapeutics. Finally, we discuss the future perspectives of peptide design and development in targeting myofibroblasts to mitigate fibrosis.


Assuntos
Miofibroblastos , Peptídeos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Anticorpos , Diferenciação Celular
3.
Adv Sci (Weinh) ; 10(14): e2202964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950739

RESUMO

Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Suínos , Ratos , Animais , Receptores CCR2/genética , Macrófagos/fisiologia , Infarto do Miocárdio/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
4.
Nat Nanotechnol ; 18(6): 657-666, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36781994

RESUMO

The central dogma that nanoparticle delivery to tumours requires enhanced leakiness of vasculatures is a topic of debate. To address this, we propose a single-vessel quantitative analysis method by taking advantage of protein-based nanoprobes and image-segmentation-based machine learning (nano-ISML). Using nano-ISML, >67,000 individual blood vessels from 32 tumour models were quantified, revealing highly heterogenous vascular permeability of protein-based nanoparticles. There was a >13-fold difference in the percentage of high-permeability vessels in different tumours and >100-fold penetration ability in vessels with the highest permeability compared with vessels with the lowest permeability. Our data suggest passive extravasation and transendothelial transport were the dominant mechanisms for high- and low-permeability tumour vessels, respectively. To exemplify the nano-ISML-assisted rational design of nanomedicines, genetically tailored protein nanoparticles with improved transendothelial transport in low-permeability tumours were developed. Our study delineates the heterogeneity of tumour vascular permeability and defines a direction for the rational design of next-generation anticancer nanomedicines.


Assuntos
Nanopartículas , Neoplasias , Humanos , Neoplasias/irrigação sanguínea , Nanomedicina/métodos , Permeabilidade Capilar , Permeabilidade
5.
J Agric Food Chem ; 70(21): 6285-6299, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35583385

RESUMO

MicroRNA (miRNA) is a class of small noncoding RNA involved in physiological and pathological processes via the regulation of gene expression. Naked miRNAs are unstable and liable to degradation by RNases. Exosome-like nanoparticles (ELNs) secreted by plants and extracellular vesicles (EVs) found in milk are abundant in miRNAs, which can be carried by ELNs and EVs to target cells to exert their bioactivities. In this review, we describe the current understanding of miRNAs in plant ELNs and milk EVs, summarize their important roles in regulation of inflammation, intestinal barrier, tumors, and infantile immunological functions, and also discuss the adverse effect of EV miRNAs on human health. Additionally, we prospect recent challenges centered around ELN and EV miRNAs for interventional applications and provide insights of grain-derived ELNs and miRNAs interventional use in human health. Overall, plant ELNs and milk EVs can transfer miRNAs to mitigate the pathological status of recipient cells by mediating the expression of target genes but may also exert some side effects. More studies are required to elucidate the in-depth understanding of potential interventional effects of ELN and EV miRNAs on human health.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Nanopartículas , Animais , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Leite/metabolismo , Plantas/metabolismo
6.
Bioact Mater ; 16: 433-450, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35415291

RESUMO

Small-diameter vascular grafts fabricated from synthetic biodegradable polymers exhibit beneficial mechanical properties but often face poor regenerative potential. Different tissue engineering approaches have been employed to improve tissue regeneration in vascular grafts, but there remains a requirement for a new generation of synthetic grafts that can orchestrate the host response to achieve robust vascular regeneration. Vascular stem/progenitor cells (SPCs) are mostly found in quiescent niches but can be activated in response to injury and participate in endothelium and smooth muscle regeneration during neo-artery formation. Here, we developed a functional vascular graft by surface immobilization of stem cell antigen-1 (Sca-1) antibody on an electrospun poly(ε-caprolactone) graft (PCL-Sca-1 Ab). PCL-Sca-1 Ab promoted capture and retainment of Sca-1+ SPCs in vitro. In rat abdominal aorta replacement models, PCL-Sca-1 Ab stimulated in vivo recruitment of Sca-1+ SPCs, and drove SPCs differentiation towards vascular cell lineages. The origin of infiltrated Sca-1+ SPCs was further investigated using a bone marrow transplantation mouse model, which revealed that Sca-1+ SPCs originating from the resident tissues and bone marrow contributed to rapid vascular regeneration of vascular grafts. Our data indicated that PCL-Sca-1 Ab vascular grafts may serve as a useful strategy to develop next generation cell-free vascular grafts.

7.
Theranostics ; 12(3): 1132-1147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154478

RESUMO

Rationale: Employing in situ bioorthogonal catalysis within subcellular organelles, such as lysosomes, remains a challenge. Lysosomal membranes pose an intracellular barrier for drug sequestration, thereby greatly limiting drug accumulation and concentrations at intended targets. Here, we provide a proof-of-concept report of a nanozyme-based strategy that mediates in situ bioorthogonal uncaging reactions within lysosomes, followed by lysosomal escape and the release of uncaged drugs into the cytoplasm. Methods: A model system composed of a protein-based nanozyme platform (based on the transition metals Co, Fe, Mn, Rh, Ir, Pt, Au, Ru and Pd) and caged compound fluorophores was designed to screen for nanozyme/protecting group pairings. The optimized nanozyme/protecting group pairing was then selected for utilization in the design of anti-cancer pro-drugs and drug delivery systems. Results: Our screening system identified Pd nanozymes that mimic mutant P450BM3 activity and specifically cleave propargylic ether groups. We found that the intrinsic peroxidase-like activity of Pd nanozymes induced the production of free radicals under acid conditions, resulting in lysosomal membrane leakage of uncaged molecules into the cytoplasm. Using a multienzyme synergistic approach, our Pd nanozymes achieved in situ bioorthogonal catalysis and nanozyme-mediated lysosomal membrane leakage, which were successfully applied to the design of model pro-drugs for anti-cancer therapy. The extension of our nanozyme system to the construction of a liposome-based "all-in-one" delivery system offers promise for realizing efficacious in vivo tumor-targeted therapies. Conclusions: This strategy shows a promising new direction by utilizing nanotechnology for drug development through in situ catalyzing bioorthogonal chemistry within specific subcellular organelles.


Assuntos
Neoplasias , Pró-Fármacos , Catálise , Humanos , Lisossomos
8.
Methods Mol Biol ; 2303: 453-468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626400

RESUMO

The ubiquitous extracellular glycosaminoglycan hyaluronan (HA) is a polymer composed of repeated disaccharide units of alternating D-glucuronic acid and D-N-acetylglucosamine residues linked via alternating ß-1,4 and ß-1,3 glycosidic bonds. Emerging data continue to reveal functions attributable to HA in a variety of physiological and pathological contexts. Defining the mechanisms regulating expression of the human hyaluronan synthase (HAS) genes that encode the corresponding HA-synthesizing HAS enzymes is therefore important in the context of HA biology in health and disease. We describe here methods to analyze transcriptional regulation of the HAS and HAS2-antisense RNA 1 genes. Elucidation of mechanisms of HA interaction with receptors such as the cell surface molecule CD44 is also key to understanding HA function. To this end, we provide protocols for fluorescent recovery after photobleaching analysis of CD44 membrane dynamics in the process of fibroblast to myofibroblast differentiation, a phenotypic transition that is common to the pathology of fibrosis of large organs such as the liver and kidney.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Miofibroblastos , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico , Miofibroblastos/metabolismo
9.
Methods Mol Biol ; 2375: 153-164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34591306

RESUMO

Electrospinning has become a popular polymer processing technique for application in vascular tissue engineering due to its unique capability to fabricate porous vascular grafts with fibrous morphology closely mimicking the natural extracellular matrix (ECMs). However, the inherently small pore sizes of electrospun vascular grafts often inhibit cell infiltration and impede vascular regeneration. Here we describe an effective and controllable method to increase the pore size of electrospun poly(ε-caprolactone) (PCL) vascular graft. With this method, composite grafts are prepared by turning on or off electrospraying of poly(ethylene oxide) (PEO) microparticles during the process of electrospinning PCL fibers. The PEO microparticles are used as a porogen agent and can be subsequently selectively removed to create a porogenic layer within the electrospun PCL grafts. Three types of porogenic PCL grafts were constructed using this method. The porogenic layer was either the inner layer, the middle one, or the outer one.


Assuntos
Alicerces Teciduais , Óxido de Etileno , Poliésteres , Polietilenoglicóis , Engenharia Tecidual
10.
Materials (Basel) ; 14(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885623

RESUMO

Bile duct injury (BDI) and bile tract diseases are regarded as prominent challenges in hepatobiliary surgery due to the risk of severe complications. Hepatobiliary, pancreatic, and gastrointestinal surgery can inadvertently cause iatrogenic BDI. The commonly utilized clinical treatment of BDI is biliary-enteric anastomosis. However, removal of the Oddi sphincter, which serves as a valve control over the unidirectional flow of bile to the intestine, can result in complications such as reflux cholangitis, restenosis of the bile duct, and cholangiocarcinoma. Tissue engineering and biomaterials offer alternative approaches for BDI treatment. Reconstruction of mechanically functional and biomimetic structures to replace bile ducts aims to promote the ingrowth of bile duct cells and realize tissue regeneration of bile ducts. Current research on artificial bile ducts has remained within preclinical animal model experiments. As more research shows artificial bile duct replacements achieving effective mechanical and functional prevention of biliary peritonitis caused by bile leakage or obstructive jaundice after bile duct reconstruction, clinical translation of tissue-engineered bile ducts has become a theoretical possibility. This literature review provides a comprehensive collection of published works in relation to three tissue engineering approaches for biomimetic bile duct construction: mechanical support from scaffold materials, cell seeding methods, and the incorporation of biologically active factors to identify the advancements and current limitations of materials and methods for the development of effective artificial bile ducts that promote tissue regeneration.

11.
Adv Mater ; 33(39): e2103128, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34350648

RESUMO

Biomimetic design of nanomaterials with enzyme-like characteristics has emerged as a promising method for the generation of novel therapeutics. However, synthesis of nanomaterials while maintaining a high degree of control over both geometry and valency poses a prominent challenge. Herein, the authors introduce a nanomaterial-based synthetic biology strategy for accurate and quantitative tailoring of high-ordered nanostructures that uses a "bottom-up" hierarchical incorporation of protein building blocks. The assembled nano-oligomers possessed tunable protein motifs and multivalent binding domains, which facilitated prolonged blood circulation time, accumulation within tumor cells through direct targeting of cell receptors, and deep tumor tissue penetration via a transcytosis mechanism. Using these protein/protein nano-oligomers as scaffolds, the authors created a new series of artificial nano-scaled metalloenzymes (nanozymes) by the in situ incorporation of metal nanoclusters within the cavity of the protein nanocages. Nanozymes were capable of mimicking peroxidase-like activity and generated cytotoxic free radicals. Compared to nanozyme alone, the systemic delivery of oligomeric nanozymes demonstrated significantly enhanced therapeutic and anti-tumor benefits. This study shows a new insight into nanotechnology by taking advantage of synthetic biotechnology.


Assuntos
Materiais Biomiméticos/química , Metaloproteínas/química , Nanoestruturas/química , Animais , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/uso terapêutico , Linhagem Celular Tumoral , Ferritinas/química , Humanos , Metais/química , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida , Distribuição Tecidual , Transplante Heterólogo
12.
Biomolecules ; 11(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439762

RESUMO

Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.


Assuntos
Fibrose/terapia , Miofibroblastos/metabolismo , Pele/patologia , Actinas/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Cicatriz , Receptores ErbB/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Ligantes , Camundongos , Fenótipo , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Wnt/metabolismo , Cicatrização , beta Catenina/metabolismo
13.
J Biol Chem ; 297(3): 100987, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364871

RESUMO

Progressive fibrosis leads to loss of organ function and affects many organs as a result of excessive extracellular matrix production. The ubiquitous matrix polysaccharide hyaluronan (HA) is central to this through association with its primary receptor, CD44, which exists as standard CD44 (CD44s) or multiple splice variants. Mediators such as profibrotic transforming growth factor (TGF)-ß1 and proinflammatory interleukin (IL)-1ß are widely associated with fibrotic progression. TGF-ß1 induces myofibroblast differentiation, while IL-1ß induces a proinflammatory fibroblast phenotype that promotes fibroblast binding to monocyte/macrophages. CD44 expression is essential for both responses. Potential CD44 splice variants involved, however, are unidentified. The TGF-ß1-activated CD44/epidermal growth factor receptor complex induces differentiation of metastatic cells through interactions with the matrix metalloproteinase inducer, CD147. This study aimed to determine the CD44 variants involved in TGF-ß1- and IL-1ß-mediated responses and to investigate the potential profibrotic role of CD147. Using immunocytochemistry and quantitative PCR, standard CD44s were shown to be essential for both TGF-ß1-induced fibroblast/myofibroblast differentiation and IL-1ß-induced monocyte binding. Co-immunoprecipitation identified that CD147 associated with CD44s. Using CD147-siRNA and confocal microscopy, we also determined that incorporation of the myofibroblast marker, αSMA, into F-actin stress fibers was prevented in the absence of CD147 and myofibroblast-dependent collagen gel contraction was inhibited. CD147 did not associate with HA, but removal of HA prevented the association of CD44s with CD147 at points of cell-cell contact. Taken together, our data suggest that CD44s/CD147 colocalization is essential in regulating the mechanical tension required for the αSMA incorporation into F-actin stress fibers that regulates myofibroblast phenotype.


Assuntos
Basigina/fisiologia , Diferenciação Celular/fisiologia , Receptores de Hialuronatos/fisiologia , Miofibroblastos/citologia , Fator de Crescimento Transformador beta1/fisiologia , Basigina/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Interleucina-1beta/fisiologia , Miofibroblastos/metabolismo
14.
Int J Mol Sci ; 22(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557232

RESUMO

Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4ß1 and α4ß7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C' loop binding cleft within integrins α4ß1 and α4ß7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C' loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4ß1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C' loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.


Assuntos
Desenho de Fármacos , Fibroblastos/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose/tratamento farmacológico , Integrinas/metabolismo , Miofibroblastos/efeitos dos fármacos , Peptídeos/farmacologia , Sítios de Ligação , Diferenciação Celular , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibronectinas/química , Fibrose/metabolismo , Fibrose/patologia , Humanos , Integrinas/química , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Simulação de Acoplamento Molecular , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
15.
Mater Sci Eng C Mater Biol Appl ; 109: 110618, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228889

RESUMO

Periodontal disease is a common complication and conventional periodontal surgery can lead to severe bleeding. Guided tissue regeneration (GTR) membranes favor periodontal regrowth, but they still have limitations, such as improper biodegradation, poor mechanical property, and no effective hemostatic property. To overcome these shortcomings, we generated unique multifunctional scaffolds. A chitosan/polycaprolactone/gelatin sandwich-like construction was fabricated by electrospinning and lyophilization. These composite scaffolds showed favorable physicochemical properties, including: appropriate porosity (<50%), pore size (about 10 µm) and mechanical stability (increasing with more PCL), good swelling and hydrophilicity. Appropriate degradation rates were approved by degradability analysis in vitro and in vivo, which resembled tissue regeneration process more closely. As shown in cell viability assay, cell attachment assay and Sirius red staining, we knew that the scaffolds had good biocompatibility, did not adversely affect cell ability for attachment, and induced high levels of collagen secretion. Experiments of blood clotting measurement in vitro showed that composite scaffolds were capable of accelerating blood clotting and could realize effective hemostasis. The results from subcutaneous implantation revealed the scaffolds had strong cell barrier effects and protection from external cell invasion. In summary, our multifunctional composite scaffolds showed optimised structure, enhanced regenerative capabilities, and serve as a basis for approaches to improve GTR designs for periodontal regeneration.


Assuntos
Quitosana , Gelatina , Teste de Materiais , Membranas Artificiais , Periodonto/fisiologia , Poliésteres , Regeneração/efeitos dos fármacos , Células 3T3 , Animais , Quitosana/química , Quitosana/farmacologia , Gelatina/química , Gelatina/farmacologia , Masculino , Camundongos , Periodonto/lesões , Periodonto/metabolismo , Poliésteres/química , Poliésteres/farmacologia , Porosidade , Ratos , Ratos Sprague-Dawley
16.
Biomaterials ; 230: 119635, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31767443

RESUMO

Oxygen deficiency is the main obstacle of hypoxia-related theranostics, thus this is a considerable amount of research focusing on the development of methods to supply oxygen by taking advantage of hypoxia-responsive properties of nanoparticles. However, strategies to properly penetrate hypoxic regions by the nanoparticles remains an unmet challenge. In this work, a biomimetic nanozyme capable of possessing catalase-like activity and the efficient direct penetration of hypoxic areas in tumor tissues was developed to supply oxygen based on catalytic tumor microenvironment-responsive reaction, providing substantial tumor hypoxia relief with nearly 3-fold reduction compared to untreated tumor tissues. To demonstrate the advantages of the nanozymes in overcoming hypoxia, a theranostic nanosystem model composed of the core/shell nanozymes and aggregation-induced emission (AIE) molecules was designed. The nanosystem was able to present multi-modal imaging of tumors and modulated the tumor microenvironment for improved photodynamic therapy (PDT) by cascade reactions of therapeutic effector molecules, thereby providing significantly enhanced therapeutic benefits in inhibiting tumor growth and lung metastasis of orthotopic breast cancer. This conceptual study showed the multifaceted features of biomimetic nanozymes as tumor therapeutics and demonstrated the encouraging potential for modulating hypoxia as an application for tumor theranostics.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Hipóxia , Neoplasias/tratamento farmacológico , Oxigênio/uso terapêutico , Medicina de Precisão , Microambiente Tumoral
17.
Biomaterials ; 224: 119488, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562997

RESUMO

Improved strategies for the treatment of tendon defects are required to successfully restore mechanical function and strength to the damaged tissue. This remains a scientific and clinical challenge, given the tendon's limited innate regenerative capacity. Here, we present an engineering solution that stimulates the host cell's remodeling abilities. We combined precision-designed templates with subcutaneous implantation to generate decellularized autologous extracellular matrix (aECM) scaffolds that had highly aligned microchannels after removal of templates and cellular components. The aECM scaffolds promoted rapid cell infiltration, favorable macrophage responses, collagen-rich extracellular matrix (ECM) synthesis, and physiological tissue remodeling in rat Achilles tendon defects. At three months post-surgery, the mechanical strength of tenocyte-populated 'neo-tendons' was comparable to pre-injury state tendons. Overall, we demonstrated an in vivo bioengineering strategy for improved restoration of tendon tissue, which also offers wider implications for the regeneration of other highly organized tissues.


Assuntos
Matriz Extracelular/metabolismo , Regeneração/fisiologia , Tendões/patologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Implantes Experimentais , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Ratos Sprague-Dawley , Transplante Autólogo
18.
Biomaterials ; 204: 13-24, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30875515

RESUMO

Vascular grafts often exhibit low patency rates in clinical settings due to the pathological environment within the patients requiring the surgery. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs) have attracted increasing attention. These sEVs contain many potent signaling molecules that play important roles in tissue regeneration, such as microRNA and cytokines. In this study, a sEVs-functionalized vascular graft was developed, and in vivo performance was systematically evaluated in a rat model of hyperlipidemia. Electrospun poly (ε-caprolactone) (PCL) vascular grafts were first modified with heparin, to enhance the anti-thrombogenicity. MSC-derived sEVs were loaded onto the heparinized PCL grafts to obtain functional vascular grafts. As-prepared vascular grafts were implanted to replace a segment of rat abdominal artery (1 cm) for up to 3 months. Results showed that the incorporation of MSC-derived sEVs effectively inhibited thrombosis and calcification, thus enhancing the patency of vascular grafts. Furthermore, regeneration of the endothelium and vascular smooth muscle was markedly enhanced, as attributed to the bioactive molecules within the sEVs, including vascular endothelial growth factor (VEGF), miRNA126, and miRNA145. More importantly, MSC-derived sEVs demonstrated a robust immunomodulatory effect, that is, they induced the transition of macrophages from a pro-inflammatory and atherogenic (M1) phenotype to an anti-inflammatory and anti-osteogenic (M2c) phenotype. This phenotypic switch was confirmed in both in vitro and in vivo analyses. Taken together, these results suggest that fabrication of vascular grafts with immunomodulatory function can provide an effective approach to improve vascular performance and functionality, with translational implication in cardiovascular regenerative medicine.


Assuntos
Calcinose/terapia , Vesículas Extracelulares/metabolismo , Hiperlipidemias/imunologia , Hiperlipidemias/terapia , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Enxerto Vascular , Grau de Desobstrução Vascular , Animais , Anti-Inflamatórios/farmacologia , Implante de Prótese Vascular , Calcinose/genética , Calcinose/imunologia , Modelos Animais de Doenças , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Heparina/farmacologia , Humanos , Imunomodulação/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/ultraestrutura , Fenótipo , Poliésteres/química , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Grau de Desobstrução Vascular/efeitos dos fármacos
19.
Acta Biomater ; 86: 465-479, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599244

RESUMO

Wound dressings with multiple functions are required to meet the complexity of the wound healing process. The multifunctionality often leads to an increase in the complexity and difficulty in dressing preparation. To surmount this problem, we used a facile preparation and fabrication process to fabricate a multi-functional dressing by integrating four widely accessible materials: plain gauze, sodium alginate (SA), Ca2+ and Co2+. Firstly, mixed Ca2+/Co2+ ion solutions with different concentration were applied to gauzes. After drying, SA solution was added to ionized gauze and Co2+-Ca2+/Gauze/SA (Ion-GSA) composite dressings were formed easily. In vitro results showed that all Ion-GSA dressings exhibited strong mechanical properties, uniform dispersion and sustained release of Ca2+ and Co2+, and the ability to retain moisture and absorb wound exudate. Besides the above advantages, dressings prepared with 0.25 g/L Co2+ and 4 g/L Ca2+ (Co2+0.25-Ca2+4 GSA composite dressings) exhibited the best overall effect for inducing a hypoxia-like response, and favorable cytocompatibility, hemostatic property and antibacterial activity. In vivo wound healing assays revealed that Co2+0.25-Ca2+4 GSA composite dressings inhibited bacterial growth, increased local Hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), transforming growth factor-ß1 (TGF-ß1) protein expression, and accelerated full-thickness skin wound healing in mouse bacterial-infected wound model. The quick healing wounds had improved angiogenesis, macrophages regulation, re-epithelialization and dense collagen deposition. Collectively, our results indicated that Co2+0.25-Ca2+4 GSA composite dressings promote wound healing. STATEMENT OF SIGNIFICANCE: Wound dressings with integrated functionalities are required to meet complex clinical requirements. However, there is often a trade-off between reducing preparation complexity and increasing the multifunctionality of the dressing's properties. In this study, we prepared multifunctional composite dressings by a facile preparation process using widely accessible materials. The composite dressings possessed the mechanical strength of gauze, had the effective wound exudate absorption, moisture maintenance and hemostatic property capacity of calcium alginate hydrogels, and had the hypoxia-like induction and the antimicrobial effects of Co2+. These functions all together promote bacteria-infected wound healing. Thus, we believed that the composite dressings can be widely applied in skin wound repair duo to their facile preparation method and good therapeutic effect.


Assuntos
Bactérias/efeitos dos fármacos , Bandagens/microbiologia , Cobalto/farmacologia , Cicatrização/efeitos dos fármacos , Células 3T3 , Alginatos/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Colágeno/metabolismo , Tecido de Granulação/efeitos dos fármacos , Tecido de Granulação/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Íons , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Neovascularização Fisiológica/efeitos dos fármacos , Reepitelização/efeitos dos fármacos , Regeneração/efeitos dos fármacos
20.
Sci Signal ; 10(506)2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162741

RESUMO

The cell surface protein CD44 is involved in diverse physiological processes, and its aberrant function is linked to various pathologies such as cancer, immune dysregulation, and fibrosis. The diversity of CD44 biological activity is partly conferred by the generation of distinct CD44 isoforms through alternative splicing. We identified an unexpected function for the ubiquitous hyaluronan-degrading enzyme, hyaluronidase 2 (HYAL2), as a regulator of CD44 splicing. Standard CD44 is associated with fibrotic disease, and its production is promoted through serine-arginine-rich (SR) protein-mediated exon exclusion. HYAL2 nuclear translocation was stimulated by bone morphogenetic protein 7, which inhibits the myofibroblast phenotype. Nuclear HYAL2 displaced SR proteins from the spliceosome, thus enabling HYAL2, spliceosome components (U1 and U2 small nuclear ribonucleoproteins), and CD44 pre-mRNA to form a complex. This prevented double-exon splicing and facilitated the inclusion of CD44 exons 11 and 12, which promoted the accumulation of the antifibrotic CD44 isoform CD44v7/8 at the cell surface. These data demonstrate previously undescribed mechanisms regulating CD44 alternative splicing events that are relevant to the regulation of cellular phenotypes in progressive fibrosis.


Assuntos
Processamento Alternativo , Moléculas de Adesão Celular/metabolismo , Núcleo Celular/enzimologia , Receptores de Hialuronatos/genética , Hialuronoglucosaminidase/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteína Morfogenética Óssea 7/fisiologia , Núcleo Celular/genética , Células Cultivadas , Éxons , Proteínas Ligadas por GPI/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Fenótipo , Fatores de Processamento de Serina-Arginina/fisiologia , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA