Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(9): 5260-5269, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37642536

RESUMO

Simple and effective detection methods for circulating tumor cells are essential for early detection and progression monitoring of tumors. The use of DNA aptamer and bioluminescence is expected to be a key tool for the simple, effective, and sensitive detection of tumor cells. Herein, we designed multifunctional protein nanoparticles for the detection of tumor cells using DNA aptamer and bioluminescence. Fusion proteins (ELP-poly(d)-POIs), composed of elastin-like polypeptide (ELP) fused with protein of interests (POIs) via poly(aspartic acid) (poly(d)), formed the protein nanoparticles based on the temperature responsivity of ELP sequences, leading to multiply displayed POIs on the protein nanoparticles. In the present study, we focused on porcine circovirus type 2 replication initiation protein (Rep), which covalently conjugated with DNA aptamers, and NanoLuc luciferase (Nluc), which emitted a strong bioluminescence, as POIs. ELP-poly(d)-Rep and ELP-poly(d)-Nluc were constructed and formed the protein nanoparticles with multiply displayed Nluc and Rep (DNA aptamer) that amplified the bioluminescence signal and tumor recognition ability. Mucin-1 (MUC1)-overexpressing human breast tumor MCF7 cells and MUC1-recognizing aptamer (MUC1 aptamer) were selected as models. The MUC1 aptamer-conjugated protein nanoparticles exhibited a 13.7-fold higher bioluminescence signal to MCF-7 cells than to human embryonic kidney 293 (HEK293) cells, which express low levels of MUC1. Furthermore, the protein nanoparticles could detect up to 70.7 cells/mL of MCF-7 cells from a cell suspension containing HEK-293. The protein nanoparticles with multiple Rep and Nluc show a great potential as a material for detecting CTCs.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas , Suínos , Animais , Humanos , Aptâmeros de Nucleotídeos/genética , Células HEK293 , Proteínas de Ciclo Celular , Células Epiteliais
2.
Anal Bioanal Chem ; 414(6): 2079-2088, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35037082

RESUMO

Detection of small amounts of target molecules with high sensitivity is important for the diagnosis of many diseases, including cancers, and is particularly important to detect early stages of disease. Here, we report the development of a temperature-responsive fusion protein (ELP-DCN) comprised of an elastin-like polypeptide (ELP), poly-aspartic acid (D), antibody-binding domain C (C), and NanoLuc luciferase (N). ELP-DCN proteins form nanoparticles above a certain threshold temperature that display an antibody-binding domain and NanoLuc luciferase on their surface. ELP-DCN nanoparticles can be applied for enhancement of immunoassay systems because they provide more antibody-binding sites and an increased number of luciferase molecules, resulting in an increase in assay signal. Here, we report the detection of human serum albumin (HSA) as a model protein using anti-HSA and ELP-DCN proteins. Upon formation of ELP-DCN nanoparticles, the detection limit improved tenfold compared to the monomeric form of ELP-DCN.


Assuntos
Nanopartículas , Humanos , Imunoensaio/métodos , Imunoglobulina G , Luciferases , Nanopartículas/química
3.
J Biomed Mater Res B Appl Biomater ; 108(6): 2691-2698, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32167675

RESUMO

There is growing interest in the functional roles of the extracellular matrix (ECM) in regulating the fate of pluripotent stem cells (PSCs). An artificially bioengineered ECM provides an excellent model for studying the molecular mechanisms underlying self-renewal and differentiation of PSCs, without multiple unknown and variable factors associated with natural substrates. Here, we have engineered multifunctional fusion proteins that are based on peptides from laminin, including p20, RGD, and elastin-like polypeptide (ELP), where laminin peptides work as cell adhesion molecules (CAMs) and ELP to promote anchorage. The functionality of these chimeric proteins, referred to as ERE-p20 and E-p20, was assessed by determining their ability to immobilize cells on a hydrophobic polystyrene surface, improve mouse induced pluripotent stem cells (miPSCs) attachment, and promote miPSC differentiation to neural progenitors. ERE-p20 and E-p20 proteins showed hydrophobic binding saturation to the polystyrene plates around 500 nM (2.39 µg/cm2 ) and 750 nM (2.27 µg/cm2 ) protein concentrations, respectively. The apparent maximum cell binding to ERE-p20 and E-p20 was approximately 81% and 73%, respectively, relative to gelatin. For neural precursors, neurite outgrowth was enhanced by the presence of RGD and p20 peptides. The expression levels of neuronal marker protein MAP2 were upregulated approximately 2.5-fold and threefold by ERE-p20 and E-p20, respectively, relative to laminin. Overall, we have shown that elastin-mimetic fusion proteins consisting of p20 with and without RGD peptides are able to induce neuronal differentiation. In conclusion, our newly designed bioengineered fusion proteins allow preparation of specific bioactive matrices or coating/scaffold for miPSCs differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Laminina/química , Neurônios/efeitos dos fármacos , Peptídeos/química , Animais , Bioengenharia , Moléculas de Adesão Celular/química , Linhagem Celular , Células Imobilizadas , Elastina , Matriz Extracelular , Camundongos , Plasmídeos
4.
Nanotechnology ; 31(25): 255102, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176872

RESUMO

DNA-displaying nanoparticles comprised of conjugates of single-stranded DNA (ssDNA) and elastin-like polypeptide (ELP) were developed. ssDNA was enzymatically conjugated to ELPs via a catalytic domain of Porcine Circovirus type 2 replication initiation protein (pRep) fused to ELPs. Nanoparticles were formed upon heating to temperatures above the phase transition temperature due to the hydrophobicity of ELPs and the hydrophilicity of conjugated ssDNA. We demonstrated the applicability of the resultant nanoparticles as drug carriers with tumor-targeting properties by conjugating a DNA aptamer, which is known to bind to Mucin 1 (MUC1), to ELPs. DNA aptamer-displaying nanoparticles encapsulating the anti-cancer drug paclitaxel were able to bind to cells overexpressing MUC1 and induce cell death.


Assuntos
DNA de Cadeia Simples/química , Elastina/química , Paclitaxel/farmacologia , Peptídeos/química , Proteínas Virais/química , Aptâmeros de Nucleotídeos/química , Sobrevivência Celular/efeitos dos fármacos , Circovirus/genética , Circovirus/metabolismo , Replicação do DNA , Portadores de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Nanopartículas , Paclitaxel/química
5.
Biomacromolecules ; 21(3): 1126-1135, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003967

RESUMO

Supramolecular protein hydrogels with tunable properties represent promising candidates for advanced designer extracellular matrices (ECMs). To control cellular functions, ECMs should be able to spatiotemporally regulate synergistic signaling between transmembrane receptors and growth factor (GF) receptors. In this study, we developed genetically engineered temperature-responsive multifunctional protein hydrogels. The designed hydrogel was fabricated by combining the following four peptide blocks: thermosensitive elastin-like polypeptides (ELPs), a polyaspartic acid (polyD) chain to control aggregation and delivery of GFs, a de novo-designed helix peptide that forms antiparallel homotetrameric coiled-coils, and a biofunctional peptide. The resultant coiled-coil unit bound ELPs (CUBEs) exhibit a controllable sol-gel transition with tunable mechanical properties. CUBEs were functionalized with bone sialoprotein-derived RGD (bRGD), and human umbilical vein endothelial cells (HUVECs) were three-dimensionally cultured in bRGD-modified CUBE (bRGD-CUBE) hydrogels. Proangiogenic activity of HUVECs was promoted by bRGD. Moreover, heparin-binding angiogenic GFs were immobilized to bRGD-CUBEs via electrostatic interactions. HUVECs cultured in GF-tethered bRGD-CUBE hydrogels formed three-dimensional (3-D) tubulelike structures. The designed CUBE hydrogels may demonstrate utility as advanced smart biomaterials for biomedical applications. Further, the protein hydrogel design strategy may provide a novel platform for constructing designer 3-D microenvironments for specific cell types.


Assuntos
Elastina , Hidrogéis , Materiais Biocompatíveis , Humanos , Peptídeos , Temperatura
6.
Anal Sci ; 36(3): 385-387, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31735760

RESUMO

A fusion protein, designated ELP-D-C, comprised of a hydrophobic elastin-like polypeptide unit, a hydrophilic aspartic acid-rich peptide unit, and an antibody-binding domain as a functional unit, was constructed. Upon heat induction, ELP-D-C forms micellar nanoparticles displaying antibody-binding domains on their surfaces. The protein nanoparticles were able to incorporate hydrophobic fluorescent compounds and subsequently detect target molecules via antibody binding by the resulting fluorescence intensity, which was proportional to the log of the concentration of the target molecule.


Assuntos
Corantes Fluorescentes/química , Imunoensaio/métodos , Nanopartículas/química
7.
Mol Biol Rep ; 46(1): 261-269, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421127

RESUMO

Modification of protein-based drug carriers with tumor-targeting properties is an important area of research in the field of anticancer drug delivery. To this end, we developed nanoparticles comprised of elastin-like polypeptides (ELPs) with fused poly-aspartic acid chains (ELP-D) displaying DNA aptamers. DNA aptamers were enzymatically conjugated to the surface of the nanoparticles via genetic incorporation of Gene A* protein into the sequence of the ELP-D fusion protein. Gene A* protein, derived from bacteriophage ϕX174, can form covalent complexes with single-stranded DNA via the latter's recognition sequence. Gene A* protein-displaying nanoparticles exhibited the ability to deliver the anticancer drug paclitaxel (PTX), whilst retaining activity of the conjugated Gene A* protein. PTX-loaded protein nanoparticles displaying DNA aptamers known to bind to the MUC1 tumor marker resulted in increased cytotoxicity with MCF-7 breast cancer cells compared to PTX-loaded protein nanoparticles without the DNA aptamer modification.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Elastina/administração & dosagem , Nanopartículas/uso terapêutico , Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Elastina/metabolismo , Feminino , Humanos , Células MCF-7 , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia
8.
Anal Biochem ; 544: 72-79, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29284122

RESUMO

Nanoparticles are small size-controlled particles from 1 to 100 nm diameters and characterized by their structure, base material and functional units displayed on their surfaces. In this study, protein-based nanoparticles composed of a hydrophobic elastin-like peptide unit, a hydrophilic aspartic acid-rich peptide unit and displaying antibody binding domains on their surfaces, were designed and genetically synthesized. The constituent fusion proteins, termed ELP-D-C, were found to exist in monomeric form (ELP-D-C/monomer) at low temperature. Above the phase transition temperature, however, ELP-D-C was found to rapidly self-assemble to form spherical micelles (ELP-D-C/micelle) with a hydrophobic core and diameters of ∼40 nm. Furthermore, ELP-D-C/micelle were shown to display antibody binding domains on their surfaces, which allowed for immobilization of antibodies and subsequent formation of large, visually detectable complexes in the presence of target molecule (antigen), whose sizes increased in proportion to the target molecule concentration. The observed target molecule concentration-dependent complex formation suggests that ELP-D-C/micelle may be useful as base particles in applications such as homogeneous turbidity immunoassays.


Assuntos
Elastina/química , Imunoensaio , Nanopartículas/química , Peptídeos/análise , Sítios de Ligação de Anticorpos , Micelas , Tamanho da Partícula , Peptídeos/imunologia , Propriedades de Superfície
9.
Analyst ; 141(24): 6557-6563, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27840869

RESUMO

In this study, we developed a protein nanoparticle-based immunoassay to detect cancer biomarkers using a bioluminescent fusion protein. This method relies on the use of protein nanoparticles comprised of genetically-engineered elastin-like polypeptides (ELPs) fused with poly-aspartic acid tails (ELP-D), previously developed in our lab. The sizes of the self-assembled ELP-D nanoparticles can be regulated at the nanoscale by charged repulsion of the poly-aspartic acid chains. To improve the sensitivity of enzyme-linked immunosorbent assays (ELISAs), we herein demonstrate the multivalent display of NanoLuc® (Nluc) luciferase and a biotin acceptor peptide (BAP) on the surfaces of ELP-D nanoparticles, and demonstrate the sensitivity of these multivalent nanoparticles as detection probes. The fusion protein comprised of ELP-D and Nluc-BAP (ELP-D-Nluc-BAP) was found to form nanoparticles with Nluc and BAP displayed multivalently on their surfaces. Moreover, the use of the nanoparticles in ELISA resulted in a detection sensitivity for α-fetoprotein (AFP) about 10 times higher than that of an assay relying on the use of the monomeric version of the fusion protein. Taken together, ELP-D-based nanoparticles displaying multivalent luciferases on their surfaces enable the construction of an ELISA with enhanced sensitivity.


Assuntos
Biomarcadores Tumorais/análise , Imunoensaio , Luciferases/química , Nanopartículas/química , Peptídeos , Biotina , Elastina , Ensaio de Imunoadsorção Enzimática , Humanos
10.
Bioconjug Chem ; 27(7): 1599-605, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27269811

RESUMO

The existing in vitro culture systems often use undefined and animal-derived components for the culture of pluripotent stem cells. Artificial bioengineered peptides have the potential to become alternatives to these components of extracellular matrix (ECM). Integrins and cadherins are two cell adhesion proteins important for stem cell self-renewal, differentiation, and phenotype stability. In the present study, we sought to mimic the physico-biochemical properties of natural ECMs that allow self-renewal of mouse induced pluripotent stem cells (iPSCs). We develop a genetically engineered ECM protein (ERE-CBP) that contains (i) an integrin binding peptide sequence (RGD/R), (ii) an E-/N-cadherin binding peptide sequence (SWELYYPLRANL/CBP), and (iii) 12 repeats of APGVGV elastin-like polypeptides (ELPs/E).While ELPs allow efficient coating by binding to nontreated hydrophobic tissue culture plates, RGD/R and CBP support integrin- and cadherin-dependent cell attachment, respectively. Mouse iPSCs on this composite matrix exhibit a more compact phenotype compared to cells on control gelatin substrate. We also demonstrated that the ERE-CBP supports proliferation and long-term self-renewal of mouse iPSCs for up to 17 passages without GSK3ß (CHIR99021) and Erk (PD0325901) inhibitors. Overall, our engineered ECM protein, which is cost-effective to produce in prokaryotic origin and flexible to modify with other cell adhesion peptides or growth factors, provides a novel approach for expansion of mouse iPSCs in vitro.


Assuntos
Biomimética/métodos , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Adsorção , Sequência de Aminoácidos , Animais , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Integrinas/metabolismo , Camundongos , Engenharia de Proteínas
11.
J Mater Chem B ; 4(14): 2512-2518, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263200

RESUMO

Tissue-specific transcription factors are key regulators of cellular differentiation. Previously, we succeeded in introducing basic helix-loop-helix tissue-specific transcription factor proteins into cells to induce cellular differentiation. Based on these results, we decided to focus on the use of tissue-specific transcription factor proteins in the construction of biomaterials. In this proof-of-concept study, we demonstrate the construction of a tissue-specific transcription factor-tethered extracellular matrix protein. Here, the tissue-specific transcription factor Olig2 was tethered to a designed artificial extracellular matrix protein via coiled-coil helix formation. Tethered Olig2 was introduced into mouse embryonic carcinoma P19 cells attached to our designed extracellular matrix protein, and was shown to exhibit the ability to induce neural differentiation.

12.
Biomed Res Int ; 2015: 208089, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539469

RESUMO

Delivery of growth factors to target cells is an important subject in tissue engineering. Towards that end, we have developed a growth factor-tethered extracellular matrix (ECM). Here, basic fibroblast growth factor (bFGF) was tethered to extracellular matrix noncovalently. The designed ECM was comprised of 12 repeats of the APGVGV peptide motif derived from elastin as a stable structural unit and included the well-known cell adhesive RGD peptide as an active functional unit. To bind bFGF to the ECM, an acidic amino acid-rich sequence was introduced at the C-terminus of the ECM protein. It consisted of 5 repeats of 4 aspartic acids and a serine, DDDDS. bFGF has a highly basic amino acid domain. Therefore, bFGF was tethered to the ECM protein by electrostatic interaction. Cells cultured on bFGF-tethered ECM were well attached to the ECM and induced proliferation without addition of soluble bFGF.


Assuntos
Matriz Extracelular/genética , Fator 2 de Crescimento de Fibroblastos/genética , Técnicas de Transferência de Genes , Engenharia Tecidual , Adesão Celular/genética , Células Cultivadas , Elastina/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Peptídeos/genética
13.
Bioconjug Chem ; 26(8): 1672-7, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26079837

RESUMO

Protein-based nanoparticles are attractive carriers for drug delivery because they are biodegradable and can be genetically designed. Moreover, modification of protein-based nanoparticles with cell-specific ligands allows for active targeting abilities. Previously, we developed protein nanoparticles comprising genetically engineered elastin-like polypeptides (ELPs) with fused polyaspartic acid tails (ELP-D). Epidermal growth factor (EGF) was displayed on the surface of the ELP-D nanoparticles via genetic design to allow for active cell-targeting abilities. Herein, we focused on the coiled-coil structural motif as a means for noncovalent tethering of growth factor to ELP-D. Specifically, two peptides known to form a heterodimer via a coiled-coil structural motif were fused to ELP-D and single-chain vascular endothelial growth factor (scVEGF121), to facilitate noncovalent tethering upon formation of the heterodimer coiled-coil structure. Drug-loaded growth factor-tethered ELP-Ds were found to be effective against cancer cells by provoking cell apoptosis. These results demonstrate that tethering growth factor to protein nanoparticles through coiled-coil formation yields a promising biomaterial candidate for targeted drug delivery.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Elastina/química , Fator de Crescimento Epidérmico/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Nanopartículas/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Engenharia Genética , Células HeLa , Humanos , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Anal Biochem ; 477: 53-5, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25724549

RESUMO

Protein-protein interactions (PPIs) are important for various biological processes in living cells. Several methods have been developed for the visualization of PPIs in vivo; however, these methods are unsuitable for visualization of post-PPI events such as dissociation and translocation. In this study, we applied a split SNAP-tag system for the visualization of post-PPI events. This method enabled tracking of the protein following dissociation from the protein-protein complex. Thus, the split SNAP-tag system should prove to be a useful tool for visualization of post-PPI events.


Assuntos
O(6)-Metilguanina-DNA Metiltransferase/metabolismo , Mapeamento de Interação de Proteínas/métodos , Células HeLa , Humanos , Mutação , O(6)-Metilguanina-DNA Metiltransferase/genética , Proteína Quinase C-alfa/metabolismo
15.
Biotechnol Lett ; 37(1): 109-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25216646

RESUMO

The feasibility of assembling enzymes, catalyzing consecutive reactions, on to a double-stranded DNA (dsDNA) scaffold utilizing zinc finger motifs is described. The catalytic activities of two zinc finger motif-fused enzymes catalyzing a bioluminescence reaction with energy recycling, namely pyruvate phosphate dikinase and firefly luciferase, have been evaluated. Bioluminescence measurements with dsDNA scaffolds coding a different distance between the binding sites for each zinc finger motif-fused enzyme confirmed the effect of the distance, proving the proximity effect of ATP recycling presumed to be the result of efficient intermediate diffusion. Thus, fusion to zinc finger motifs offers a promising option for the assembly of bi-enzymes, catalyzing a consecutive reaction, onto a dsDNA scaffold with a proximity effect.


Assuntos
DNA/química , Proteínas Recombinantes de Fusão/metabolismo , Dedos de Zinco/genética , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Engenharia de Proteínas , Piruvato Ortofosfato Diquinase/química , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
16.
Bioorg Med Chem Lett ; 24(17): 4129-31, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25113935

RESUMO

We demonstrate examples of cellular differentiation assessments, including cellular neurite outgrowth and fat cell maturation, by measuring the degree of membrane adsorption or cellular internalization using designed peptides. Because changes in the cellular membrane and cytosol during differentiation were shown to influence membrane adsorption and cellular internalization, we could successfully evaluate the extent of differentiation simply like stain indicators.


Assuntos
Diferenciação Celular , Membrana Celular/metabolismo , Peptídeos/farmacocinética , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adsorção/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Células PC12 , Peptídeos/química , Peptídeos/farmacologia , Ratos , Relação Estrutura-Atividade , Propriedades de Superfície
17.
J Biomed Mater Res B Appl Biomater ; 102(8): 1792-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24700640

RESUMO

The development of protein-based carriers for drug delivery has been well studied. We previously constructed a protein-based nanoparticle consisting of genetically engineered elastin-like polypeptides (ELPs) with a fused poly-aspartic acid tail (ELPD ). The size of the self-assembled ELPD nanoparticles was regulated by charged repulsion of the poly-aspartic acid chains. In the present study, epidermal growth factor (EGF) was genetically fused to the C-terminus of ELPD to impart an active targeting ability to the ELPD nanoparticles. We examined the nanoparticle formation with EGF as well as its targeting ability. ELPD with fused EGF was found to form nanoparticles that displayed multivalent EGFs on their surface. EGF-displayed nanoparticles loaded with the anti-cancer drug paclitaxel were internalized into cells overexpressing the EGF receptor, and induced cell death.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Fator de Crescimento Epidérmico/farmacologia , Nanopartículas/química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/genética , Receptores ErbB/agonistas , Humanos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética
18.
Biomed Mater ; 9(1): 015004, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24343430

RESUMO

In this study, an artificial multi-functional extracellular matrix (ECM) protein, tethered with a growth factor, was developed for neurite outgrowth induction. The designed ECM protein was comprised of an elastin-like peptide, as a structural unit, as well as the AG73 peptide sequence derived from the laminin and the C3 peptide sequence, which binds to neural cell adhesion molecules (derived from a synthetic peptide library) as functional units. Both AG73 and C3 have been demonstrated to promote cell adhesion and enhance neurite outgrowth. For the tethering of basic fibroblast growth factor (bFGF) to the ECM protein, helical peptides were fused to the ECM protein to form a coiled-coil helical structure with helical peptide-fused bFGF. Neurite outgrowth was induced in the PC12 cells that were cultured on this ECM protein as a result of the tethered-bFGF. Moreover, neurite outgrowth was enhanced by the AG73 and C3 peptides of the ECM protein.


Assuntos
Matriz Extracelular/química , Fator 2 de Crescimento de Fibroblastos/química , Laminina/química , Neuritos/metabolismo , Animais , Adesão Celular , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Elastina/química , Proteínas da Matriz Extracelular/química , Células PC12 , Peptídeos/química , Ratos , Proteínas Recombinantes de Fusão/química , Engenharia Tecidual/métodos
19.
Bioorg Med Chem ; 21(9): 2560-7, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23498920

RESUMO

The cellular penetration (CP) activity of functional molecules has attracted significant attention as one of the most promising new approaches for drug delivery. In particular, cell-penetrating peptides (CPPs) have been studied extensively in cellular engineering. Because there have been few large-scale systematic studies to identify peptide sequences with optimal CP activity or that are suitable for further applications in cell engineering, such as cell-specific penetration and cell-selective culture, we screened and compared the cellular uptake (CU) activity of 54 systematically designed α-helical peptides in HeLa cells. Furthermore, the CU activity of 24 designed peptides was examined in four cell lines using a cell fingerprinting technique and statistical approaches. The CU activities in various cells depended on amino acid residues of peptide sequences as well as charge, α-helical content and hydrophobicity of the peptides. Notably, the mutation of a single residue significantly altered the CU ability of a peptide, highlighting the variability of cell uptake mechanisms. Moreover, these results demonstrated the feasibility of cell-selective culture by conducting cell-selective permeation and death in cultures containing two cell types. These studies may lead to further peptide library design and screening for new classes of CPPs with useful functions.


Assuntos
Desenho de Fármacos , Peptídeos/farmacocinética , Células 3T3-L1 , Animais , Sobrevivência Celular , Células Cultivadas , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Células PC12 , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Estrutura Secundária de Proteína , Ratos
20.
Biomaterials ; 34(13): 3315-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388150

RESUMO

An appropriate method to bind extracellular matrix (ECM) proteins and growth factors using advanced protein engineering techniques has the potential to enhance cell proliferation and differentiation for tissue regeneration and repair. In this study we developed a method to co-immobilize non-covalently an ECM protein to three different types of growth factors: basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and single-chain vascular endothelial growth factor (scVEGF121) through a coiled-coil structure formed by helixA/helixB in order to promote angiogenesis. The designed ECM was established by fusing two repeats of elastin-derived unit (APGVGV)(12), cell-adhesive sequence (RGD), laminin-derived IKVAV sequence and collagen-binding domain (CBD) to obtain CBDEREI2. HelixA was fused to each growth factor and helixB to the engineered ECM. Human umbilical vein endothelial cells (HUVECs) were cultured on engineered ECM and growth factors connected through the coiled-coil formation between helixA and helixB. Cell proliferation and capillary tube-like formation were monitored. Moreover, the differentiated cells with high expression of Ang-2 suggested the ECM remodeling. Our approach of non-covalent coupling method should provide a protein-release control system as a new contribution in biomaterial for tissue engineering field.


Assuntos
Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Adsorção , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas Imobilizadas/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA