Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nutrients ; 15(16)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37630845

RESUMO

Cancer therapy is often associated with severe side effects such as drug induced weight loss, also known as chemotherapy-induced cachexia. The aim of this study was to investigate the effects of a multispecies probiotic (OMNi-BiOTiC® 10 AAD) in a chemotherapy mouse model. A total of 24 male BALB/c mice were gavage-fed with the probiotic formulation or water, once a day for 3 weeks. In the third week, the mice received intraperitoneal cyclophosphamide. At euthanasia, the organs were dissected, and serum was sampled for cytokine analysis. Tight junction components, myosin light chain kinase, mucins, and apoptosis markers were detected in the ileum and colon using histological analyses and qRT-PCR. Lipolysis was analyzed by enzymatic activity assay, Western blotting analyses, and qRT-PCR in WAT. The fecal microbiome was measured with 16S-rRNA gene sequencing from stool samples, and fecal volatile organic compounds analysis was performed using gas chromatography/mass spectrometry. The probiotic-fed mice exhibited significantly less body weight loss and adipose tissue wasting associated with a reduced CGI58 mediated lipolysis. They showed significantly fewer pro-inflammatory cytokines and lower gut permeability compared to animals fed without the probiotic. The colons of the probiotic-fed animals showed lower inflammation scores and less goblet cell loss. qRT-PCR revealed no differences in regards to tight junction components, mucins, or apoptosis markers. No differences in microbiome alpha diversity, but differences in beta diversity, were observed between the treatment groups. Taxonomic analysis showed that the probiotic group had a lower relative abundance of Odoribacter and Ruminococcus-UCG014 and a higher abundance of Desulfovibrio. VOC analysis yielded no significant differences. The results of this study indicate that oral administration of the multispecies probiotic OMNi-BiOTiC® 10 AAD could mitigate cyclophosphamide-induced chemotherapy side effects.


Assuntos
Fármacos Antiobesidade , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Animais , Camundongos , Caquexia , Tecido Adiposo , Lipólise , Ciclofosfamida/efeitos adversos , Citocinas
2.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064882

RESUMO

Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification of animals or herds affected by MAP are urgently required. This explorative study evaluated the potential of volatile organic compounds (VOCs) to discriminate between cattle with and without MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs were identified by GC-MS and quantified against reference substances. To discriminate MAP-positive from MAP-negative samples, VOC feature selection and random forest classification were performed. Classification models, generated for each biological specimen, were evaluated using repeated cross-validation. The robustness of the results was tested by predicting samples of two different sampling days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4-5). Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes. Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most reproducible, discriminatory, and highly predictive.


Assuntos
Ar , Fezes/química , Gases/análise , Odorantes/análise , Paratuberculose/diagnóstico , Alvéolos Pulmonares/metabolismo , Animais , Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/microbiologia , Curva ROC , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise
3.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530644

RESUMO

The aim of this study was to analyze the exhaled volatile organic compounds (VOCs) profile, airway microbiome, lung function and exercise performance in congenital diaphragmatic hernia (CDH) patients compared to healthy age and sex-matched controls. A total of nine patients (median age 9 years, range 6-13 years) treated for CDH were included. Exhaled VOCs were measured by GC-MS. Airway microbiome was determined from deep induced sputum by 16S rRNA gene sequencing. Patients underwent conventional spirometry and exhausting bicycle spiroergometry. The exhaled VOC profile showed significantly higher levels of cyclohexane and significantly lower levels of acetone and 2-methylbutane in CDH patients. Microbiome analysis revealed no significant differences for alpha-diversity, beta-diversity and LefSe analysis. CDH patients had significantly lower relative abundances of Pasteurellales and Pasteurellaceae. CDH patients exhibited a significantly reduced Tiffeneau Index. Spiroergometry showed no significant differences. This is the first study to report the VOCs profile and airway microbiome in patients with CDH. Elevations of cyclohexane observed in the CDH group have also been reported in cases of lung cancer and pneumonia. CDH patients had no signs of impaired physical performance capacity, fueling controversial reports in the literature.


Assuntos
Bactérias/classificação , Hérnias Diafragmáticas Congênitas/cirurgia , Herniorrafia/métodos , RNA Ribossômico 16S/genética , Compostos Orgânicos Voláteis/análise , Acetona/análise , Adolescente , Bactérias/genética , Bactérias/isolamento & purificação , Criança , DNA Bacteriano/genética , DNA Ribossômico/genética , Exercício Físico , Feminino , Hérnias Diafragmáticas Congênitas/metabolismo , Hérnias Diafragmáticas Congênitas/fisiopatologia , Humanos , Masculino , Microbiota , Pentanos/análise , Filogenia , Espirometria , Capacidade Vital
4.
J Breath Res ; 14(4): 046012, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021213

RESUMO

Breath analysis holds promise for non-invasive in vivo monitoring of disease related processes. However, physiological parameters may considerably affect profiles of exhaled volatile organic substances (VOCs). Volatile substances can be released via alveoli, bronchial mucosa or from the upper airways. The aim of this study was the systematic investigation of the influence of different sampling sites in the respiratory tract on VOC concentration profiles by means of a novel experimental setup. After ethical approval, breath samples were collected from 25 patients undergoing bronchoscopy for endobronchial ultrasound or bronchoscopic lung volume reduction from different sites in the airways. All patients had total intravenous anaesthesia under pressure-controlled ventilation. If necessary, respiratory parameters were adjusted to keep PETCO2 = 35-45 mm Hg. 30 ml gas were withdrawn at six sampling sites by means of gastight glass syringes: S1 = Room air, S2 = Inspiration, S3 = Endotracheal tube, S4 = Trachea, S5 = Right B6 segment, S6 = Left B6 segment (S4-S6 through the bronchoscope channel). 10 ml were used for VOC analysis, 20 ml for PCO2 determination. Samples were preconcentrated by solid-phase micro-extraction (SPME) and analysed by gas chromatography-mass spectrometry (GC-MS). PCO2 was determined in a conventional blood gas analyser. Statistically significant differences in substance concentrations for acetone, isoprene, 2-methyl-pentane and n-hexane could be observed between different sampling sites. Increasing substance concentrations were determined for acetone (15.3%), 2-methyl-pentane (11.4%) and n-hexane (19.3%) when passing from distal to proximal sampling sites. In contrast, isoprene concentrations decreased by 9.9% from proximal to more distal sampling sites. Blank bronchoscope measurements did not show any contaminations. Increased substance concentrations in the proximal respiratory tract may be explained through substance excretion from bronchial mucosa while decreased concentrations could result from absorption or reaction processes. Spatial mapping of VOC profiles can provide novel insights into substance specific exhalation kinetics and mechanisms.


Assuntos
Testes Respiratórios/métodos , Broncoscopia , Expiração , Manejo de Espécimes , Compostos Orgânicos Voláteis/análise , Dióxido de Carbono/química , Feminino , Humanos , Limite de Detecção , Pulmão/química , Masculino , Pessoa de Meia-Idade , Pressão Parcial
5.
Nutrients ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650568

RESUMO

Malignant diseases can cause tumor-associated cachexia (TAC). Supplementation with prebiotic non-digestible carbohydrates exerts positive metabolic effects in experimental oncologic diseases. The aim of this project was to assess the effect of prebiotic supplementation with OMNi-LOGiC® FIBRE on intestinal microbiome, bacterial metabolism, gut permeability, and inflammation in a murine model of neuroblastoma (NB)-associated TAC. For this study, 2,000,000 NB cells (MHH-NB11) were implanted into athymic mice followed by daily supplementation with water or 200 mg prebiotic oligosaccharide (POS) OMNi-LOGiC® FIBRE (NB-Aqua, n = 12; NB-POS, n = 12). Three animals of each tumor group did not develop NB. The median time of tumor growth (first visibility to euthanasia) was 37 days (IQR 12.5 days) in the NB-Aqua group and 37 days (IQR 36.5 days) in the NB-POS group (p = 0.791). At euthanasia, fecal microbiome and volatile organic compounds (VOCs), gut permeability (fluorescein isothiocyanate-dextran (FITC-dextran), and gut barrier markers were measured. Values were compared to sham animals following injection of culture medium and gavage of either water or OMNi-LOGiC® FIBRE (SH-Aqua, n = 10; SH-POS, n = 10). Alpha diversity did not differ significantly between the groups. Principal coordinate analysis (PCoA) revealed clustering differences between Aqua and POS animals. Both NB and POS supplementation led to taxonomic alterations of the fecal microbiome. Of 49 VOCs, 22 showed significant differences between the groups. NB animals had significantly higher gut permeability than Aqua animals; POS did not ameliorate these changes. The pore and leak pathways of tight junctions did not differ between groups. In conclusion, our results suggest that NB-induced TAC causes increased gut permeability coupled with compositional changes in the fecal microbiome and VOC profile. Prebiotic supplementation with OMNi-LOGiC® FIBRE seemed to induce modifications of the fecal microbiome and VOC profile but did not improve gut permeability.


Assuntos
Caquexia/metabolismo , Caquexia/microbiologia , Suplementos Nutricionais , Fezes/química , Microbioma Gastrointestinal/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Neuroblastoma/complicações , Prebióticos/administração & dosagem , Compostos Orgânicos Voláteis/metabolismo , Animais , Caquexia/etiologia , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/farmacologia , Fibras na Dieta/administração & dosagem , Fibras na Dieta/farmacologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Permeabilidade/efeitos dos fármacos , Células Tumorais Cultivadas
6.
Sci Rep ; 9(1): 18894, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827195

RESUMO

Influenza A is a serious pathogen itself, but often leads to dangerous co-infections in combination with bacterial species such as Streptococcus pyogenes. In comparison to classical biochemical methods, analysis of volatile organic compounds (VOCs) in headspace above cultures can enable destruction free monitoring of metabolic processes in vitro. Thus, volatile biomarkers emitted from biological cell cultures and pathogens could serve for monitoring of infection processes in vitro. In this study we analysed VOCs from headspace above (co)-infected human cells by using a customized sampling system. For investigating the influenza A mono-infection and the viral-bacterial co-infection in vitro, we analysed VOCs from Detroit cells inoculated with influenza A virus and S. pyogenes by means of needle-trap micro-extraction (NTME) and gas chromatography mass spectrometry (GC-MS). Besides the determination of microbiological data such as cell count, cytokines, virus load and bacterial load, emissions from cell medium, uninfected cells and bacteria mono-infected cells were analysed. Significant differences in emitted VOC concentrations were identified between non-infected and infected cells. After inoculation with S. pyogenes, bacterial infection was mirrored by increased emissions of acetaldehyde and propanal. N-propyl acetate was linked to viral infection. Non-destructive monitoring of infections by means of VOC analysis may open a new window for infection research and clinical applications. VOC analysis could enable early recognition of pathogen presence and in-depth understanding of their etiopathology.


Assuntos
Vírus da Influenza A , Influenza Humana/metabolismo , Odorantes/análise , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes , Compostos Orgânicos Voláteis/análise , Linhagem Celular Tumoral , Coinfecção , Cromatografia Gasosa-Espectrometria de Massas , Humanos
7.
Cells ; 8(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295931

RESUMO

Metabolic characterization of human adipose tissue-derived mesenchymal stromal/stem cells (ASCs) is of importance in stem cell research. The monitoring of the cell status often requires cell destruction. An analysis of volatile organic compounds (VOCs) in the headspace above cell cultures might be a noninvasive and nondestructive alternative to in vitro analysis. Furthermore, VOC analyses permit new insight into cellular metabolism due to their view on volatile compounds. Therefore, the aim of our study was to compare VOC profiles in the headspace above nondifferentiating and adipogenically differentiating ASCs. To this end, ASCs were cultivated under nondifferentiating and adipogenically differentiating conditions for up to 21 days. At different time points the headspace samples were preconcentrated by needle trap micro extraction and analyzed by gas chromatography/mass spectrometry. Adipogenic differentiation was assessed at equivalent time points. Altogether the emissions of 11 VOCs showed relevant changes and were analyzed in more detail. A few of these VOCs, among them acetaldehyde, were significantly different in the headspace of adipogenically differentiating ASCs and appeared to be linked to metabolic processes. Furthermore, our data indicate that VOC headspace analysis might be a suitable, noninvasive tool for the metabolic monitoring of (mesenchymal stem) cells in vitro.


Assuntos
Tecido Adiposo/química , Células-Tronco Mesenquimais/química , Compostos Orgânicos Voláteis/química , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Compostos Orgânicos Voláteis/análise
8.
Pediatr Res ; 85(4): 546-555, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30696986

RESUMO

BACKGROUND: Following transplantation of human neuroblastoma (NB) cells into athymic mice, we investigated the effects of tumor growth and cyclophosphamide (CTX) treatment on systemic metabolism, gut inflammation and permeability, fecal microbiome and volatile organic compounds (VOCs). METHODS: NB cells (MHH-NB11) were implanted into athymic mice (n=20); 20 healthy mice served as controls (sham).  CTX was given to 20 animals (10 NB and 10 sham) after 8 and 9 weeks. Metabolic changes were measured. Ileum samples were obtained for RT-PCR (claudins 2 and 4, occludin, tight junction protein 1) and apoptosis rate determination. Fecal microbiome and VOCs were analyzed. Values were compared to sham animals. RESULTS: NB caused reduction of adipose tissue, increases of IL-6 and TNF-α, and decreases of TGF-ß1 and -ß2. Serum FITC-dextrane levels were increased in NB and improved under CTX. Claudin 4 expression was higher in NB versus NB + CTX and sham animals. NB caused increased apoptosis of epithelial cells. NB but also CTX led to a reduction in the abundance of Lactobacillus. NB led to alterations of the fecal VOC profile. CONCLUSIONS: NB caused a catabolic pro-inflammatory state, increased gut permeability, altered fecal VOCs and reductions of Lactobacillus. Further investigations are required to determine if modifications of the intestinal microbiome may reverse some of the observed effects.


Assuntos
Antineoplásicos/farmacologia , Ciclofosfamida/farmacologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Neuroblastoma/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus
9.
Sci Rep ; 8(1): 13113, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166567

RESUMO

The growing cancer incidence and mortality worldwide claims for the development of novel diagnostic strategies. In this study we aimed to explore the potential of an innovative methodology, based on a needle trap microextraction (NTME), combined with gas chromatography-mass spectrometry (GC-MS), as new approach to isolate and profile urinary volatile organic metabolites (VOMs) from lung cancer (LC) patients and healthy individuals (CTRL). In this context, different experimental parameters with influence of NTME extraction efficiency including, temperature, equilibration time, headspace volume, ionic strength, pH, effects of sample volume and stirring, were investigated and optimized. For the DVB/CarX/Car1000 needle trap device (NTD), the best results were obtained using 40 mL headspace of a 4-mL acidified (pH = 2) urine sample with 20% NaCl and an extraction temperature of 50 °C for 40 min of equilibration time. The stability of the isolated VOMs was investigated up to 72 h after extraction. From the VOMs identified, belonging namely to ketones, sulphur and benzene derivatives, 98 presented a frequency of occurrence above 90%. Data were processed by discriminant analysis, retrieving differentiated clusters for LC and CTRL groups. As far we are aware, this is the first study using NTME/GC-MS to establish urinary volatomic profiles. Preliminary results are very promising, as broad and comprehensive volatile profiles were obtained. Moreover, the extended storage stability of the NTD devices opens new opportunities for sampling other matrices in a wide range of applications.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Neoplasias Pulmonares/urina , Metabolômica , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/urina , Adolescente , Adulto , Idoso , Análise Discriminante , Feminino , Humanos , Concentração de Íons de Hidrogênio , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Sci Rep ; 8(1): 10838, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022081

RESUMO

Natural menstrual cycle and/or oral contraception diversely affect women metabolites. Longitudinal metabolic profiling under constant experimental conditions is thereby realistic to understand such effects. Thus, we investigated volatile organic compounds (VOCs) exhalation throughout menstrual cycles in 24 young and healthy women with- and without oral contraception. Exhaled VOCs were identified and quantified in trace concentrations via high-resolution real-time mass-spectrometry, starting from a menstruation and then repeated follow-up with six intervals including the next bleeding. Repeated measurements within biologically comparable groups were employed under optimized measurement setup. We observed pronounced and substance specific changes in exhaled VOC concentrations throughout all cycles with low intra-individual variations. Certain blood-borne volatiles changed significantly during follicular and luteal phases. Most prominent changes in endogenous VOCs were observed at the ovulation phase with respect to initial menstruation. Here, the absolute median abundances of alveolar ammonia, acetone, isoprene and dimethyl sulphide changed significantly (P-value ≤ 0.005) by 18.22↓, 13.41↓, 18.02↑ and 9.40↓%, respectively. These VOCs behaved in contrast under the presence of combined oral contraception; e.g. isoprene decreased significantly by 30.25↓%. All changes returned to initial range once the second bleeding phase was repeated. Changes in exogenous benzene, isopropanol, limonene etc. and smoking related furan, acetonitrile and orally originated hydrogen sulphide were rather nonspecific and mainly exposure dependent. Our observations could apprehend a number of known/pre-investigated metabolic effects induced by monthly endocrine regulations. Potential in vivo origins (e.g. metabolic processes) of VOCs are crucial to realize such effects. Despite ubiquitous confounders, we demonstrated the true strength of volatolomics for metabolic monitoring of menstrual cycle and contraceptives. These outcomes may warrant further studies in this direction to enhance our fundamental and clinical understanding on menstrual metabolomics and endocrinology. Counter-effects of contraception can be deployed for future noninvasive assessment of birth control pills. Our findings could be translated toward metabolomics of pregnancy, menopause and post-menopausal complications via breath analysis.


Assuntos
Anticoncepção/métodos , Anticoncepcionais Orais/administração & dosagem , Expiração/fisiologia , Menstruação/fisiologia , Compostos Orgânicos Voláteis/análise , Adolescente , Adulto , Testes Respiratórios , Feminino , Humanos , Pessoa de Meia-Idade , Fenômenos Fisiológicos Respiratórios , Adulto Jovem
11.
J Breath Res ; 12(2): 026016, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29199640

RESUMO

Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) represents an attractive tool for the real-time analysis of VOC profiles in human breath. Quantification of breath VOCs by means of direct MS may be affected by the matrix, as human breath not only contains several hundred VOCs at the ppbV-pptV level, but is water saturated and contains percentage levels of CO2. Investigation of breath biomarkers in clinical studies requires quantitative and comparable results. We therefore systematically assessed the effect of humidity, CO2 and O2 on the results of PTR-MS analysis. We investigated more than 20 VOCs, including aldehydes, ketones, aromatic compounds and hydrocarbons with different sample humidity, CO2 and O2 content. The influence of data processing (e.g. normalization to the H3O+ ion count) was also addressed. An increase of the H3O+ count of about 20% was observed when the humidity in the sample was increased to breath levels. Large differences regarding the measured VOC intensities were found between the dry and humid samples. Data normalization to the H3O+ or water-clusters could not fully compensate for the humidity-dependent effects. However, as the determination of most VOCs linearly depends on the humidity over the whole investigated range, factor-based correction seems possible. The effects of CO2 were more pronounced in the dry samples than in the humid samples but only had a minor influence on the results. The same was true for the influence of O2. For the reliable quantification of VOCs in clinical studies and for the standardization of VOC research, well-adapted calibration standards are required for PTR-MS analysis.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Dióxido de Carbono/análise , Umidade , Espectrometria de Massas/métodos , Oxigênio/análise , Prótons , Calibragem , Expiração , Humanos , Padrões de Referência , Respiração Artificial , Fumar/efeitos adversos , Temperatura , Compostos Orgânicos Voláteis/análise , Água
12.
J Breath Res ; 11(1): 016005, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28068288

RESUMO

Analysis of exhaled VOCs can provide information on physiology, metabolic processes, oxidative stress and lung diseases. In critically ill patients, VOC analysis may be used to gain complimentary information beyond global clinical parameters. This seems especially attractive in mechanically ventilated patients frequently suffering from impairment of gas exchange. This study was intended to assess (a) the effects of recruitment maneuvers onto VOC profiles, (b) the correlations between electrical impedance tomography (EIT) data and VOC profiles and (c) the effects of recruitment onto distribution of ventilation. Eleven mechanically ventilated patients were investigated during lung recruitment after cardiac surgery. Continuous breath gas analysis by means of PTR-ToF-MS, EIT and blood gas analyses were performed simultaneously. More than 300 mass traces could be detected and monitored continuously by means of PTR-ToF-MS in every patient. Exhaled VOC concentrations varied with recruitment induced changes in minute ventilation and cardiac output. Ammonia exhalation depended on blood pH. The improvement in dorsal lung ventilation during recruitment ranged from 9% to 110%. Correlations between exhaled concentrations of acetone, isoprene, benzene sevoflurane and improvement in regional ventilation during recruitment were observed. Extent and quality of these correlations depended on physico-chemical properties of the VOCs. Combination of continuous real-time breath analysis and EIT revealed correlations between exhaled VOC concentrations and distribution of ventilation. This setup enabled immediate recognition of physiological and therapeutic effects in ICU patients. In a perspective, VOC analysis could be used for non-invasive control and optimization of ventilation strategies.


Assuntos
Testes Respiratórios/métodos , Impedância Elétrica , Expiração , Respiração Artificial , Tomografia/métodos , Compostos Orgânicos Voláteis/análise , Amônia/análise , Gasometria , Butadienos/análise , Débito Cardíaco , Feminino , Hemiterpenos/análise , Humanos , Concentração de Íons de Hidrogênio , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Pentanos/análise , Fatores de Tempo
13.
J Breath Res ; 10(3): 037103, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604146

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic granulomatous enteritis in ruminants. Bacterial growth is still the diagnostic 'gold standard', but is very time consuming. MAP-specific volatile organic compounds (VOCs) above media could accelerate cultural diagnosis. The aim of this project was to assess the kinetics of a VOC profile linked to the growth of MAP in vitro. The following sources of variability were taken into account: five different culture media, three different MAP strains, inoculation with different bacterial counts, and different periods of incubation. Needle-trap microextraction was employed for pre-concentration of VOCs, and gas chromatography-mass spectrometry for subsequent analysis. All volatiles were identified and calibrated by analysing pure references at different concentration levels. More than 100 VOCs were measured in headspaces above MAP-inoculated and control slants. Results confirmed different VOC profiles above different culture media. Emissions could be assigned to either egg-containing media or synthetic ingredients. 43 VOCs were identified as potential biomarkers of MAP growth on Herrold's Egg Yolk Medium without significant differences between the tree MAP strains. Substances belonged to the classes of alcohols, aldehydes, esters, ketones, aliphatic and aromatic hydrocarbons. With increasing bacterial density the VOC concentrations above MAP expressed different patterns: the majority of substances increased (although a few decreased after reaching a peak), but nine VOCs clearly decreased. Data support the hypotheses that (i) bacteria emit different metabolites on different culture media; (ii) different MAP strains show uniform VOC patterns; and (iii) cultural diagnosis can be accelerated by taking specific VOC profiles into account.


Assuntos
Técnicas de Cultura de Células/métodos , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Análise de Variância , Animais , Biomarcadores/análise , Contagem de Colônia Microbiana , Meios de Cultura/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética
14.
Artigo em Inglês | MEDLINE | ID: mdl-25014347

RESUMO

Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Testes Diagnósticos de Rotina/métodos , Doença , Expiração/fisiologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
15.
J Breath Res ; 8(3): 034001, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946087

RESUMO

Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer, but also during surgery and in intensive care units. The investigation of cell cultures opens up new possibilities for elucidation of the biochemical background of volatile compounds. In future studies, combined investigations of a particular compound with regard to human matrices such as breath, urine, saliva and cell culture investigations will lead to novel scientific progress in the field.


Assuntos
Testes Respiratórios/métodos , Expiração , Fezes/química , Saliva/química , Pele/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/urina , Humanos
16.
Anal Chem ; 85(21): 10321-9, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24044609

RESUMO

Analysis of volatile organic compounds (VOCs) in breath holds great promise for noninvasive diagnostic applications. However, concentrations of VOCs in breath may change quickly, and actual and previous uptakes of exogenous substances, especially in the clinical environment, represent crucial issues. We therefore adapted proton-transfer-reaction-time-of-flight-mass spectrometry for real time breath analysis in the clinical environment. For reasons of medical safety, a 6 m long heated silcosteel transfer line connected to a sterile mouth piece was used for breath sampling from spontaneously breathing volunteers and mechanically ventilated patients. A time resolution of 200 ms was applied. Breath from mechanically ventilated patients was analyzed immediately after cardiac surgery. Breath from 32 members of staff was analyzed in the post anesthetic care unit (PACU). In parallel, room air was measured continuously over 7 days. Detection limits for breath-resolved real time measurements were in the high pptV/low ppbV range. Assignment of signals to alveolar or inspiratory phases was done automatically by a matlab-based algorithm. Quickly and abruptly occurring changes of patients' clinical status could be monitored in terms of breath-to-breath variations of VOC (e.g. isoprene) concentrations. In the PACU, room air concentrations mirrored occupancy. Exhaled concentrations of sevoflurane strongly depended on background concentrations in all participants. In combination with an optimized inlet system, the high time and mass resolution of PTR-ToF-MS provides optimal conditions to trace quick changes of breath VOC profiles and to assess effects from the clinical environment.


Assuntos
Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Algoritmos , Humanos , Limite de Detecção , Prótons
17.
Eur Respir J ; 40(3): 706-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22267752

RESUMO

Noninvasive breath analysis may provide valuable information for cancer recognition if disease-specific volatile biomarkers could be identified. In order to compare nondiseased and diseased tissue in vivo, this study took advantage of the special circumstances of one-lung ventilation (OLV) during lung-surgery. 15 cancer patients undergoing lung resection with OLV were enrolled. From each patient, alveolar breath samples were taken separately from healthy and diseased lungs before and after tumour resection. Volatile substances were pre-concentrated by means of solid-phase microextraction, and were separated, identified and quantified by means of gas chromatography-mass spectrometry. Different classes of volatile substances could be identified according to their concentration profiles. Due to prolonged fasting and activation of lipolysis, concentrations of endogenous acetone significantly increased during surgery. Exogenous substances, such as benzene or cyclohexanone, showed typical washout exhalation kinetics. Exhaled concentrations of potentially tumour associated substances, such as butane or pentane, were different for nondiseased and diseased lungs and decreased significantly after surgery. Separate analysis of volatile substances exhaled from healthy and diseased lungs in the same patient, together with thorough consideration of substance origins and exhalation kinetics offers unique opportunities of biomarker recognition and evaluation.


Assuntos
Neoplasias Pulmonares/diagnóstico , Ventilação Monopulmonar , Acetona/análise , Idoso , Benzeno/análise , Biomarcadores Tumorais/análise , Testes Respiratórios , Butanos/análise , Cicloexanonas/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Pentanos/análise , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
18.
J Pharm Biomed Anal ; 53(4): 1022-7, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20674211

RESUMO

Polythiophene (PTh) and polypyrrole (PPy) as sorbent phases for solid phase microextraction (SPME) were applied in order to extract the multi-resistant Staphylococcus aureus (MRSA) antibiotic drugs (linezolid and daptomycin) from whole blood followed by high performance liquid chromatography (HPLC) determination with UV detection. Relative standard deviations (RSDs) of in vitro and pseudo in vivo measurements performed in whole blood were in the range of 4.58-15.91% and 6.09-17.33% for linezolid and daptomycin, respectively. Determination coefficients (R(2)) were in range of 0.9884-0.9945 and 0.9807-0.9818 for linezolid and daptomycin, respectively. This study proved better adsorption capacity of PTh SPME coating compared to PPy coating for both, linezolid and daptomycin.


Assuntos
Acetamidas/sangue , Antibacterianos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Daptomicina/sangue , Oxazolidinonas/sangue , Microextração em Fase Sólida/métodos , Humanos , Linezolida , Polímeros/química , Pirróis/química , Tiofenos/química
19.
Clin Chim Acta ; 411(21-22): 1637-44, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20542019

RESUMO

BACKGROUND: Up to now, none of the breath biomarkers or marker sets proposed for cancer recognition has reached clinical relevance. Possible reasons are the lack of standardized methods of sampling, analysis and data processing and effects of environmental contaminants. METHODS: Concentration profiles of endogenous and exogenous breath markers were determined in exhaled breath of 31 lung cancer patients, 31 smokers and 31 healthy controls by means of SPME-GC-MS. Different correcting and normalization algorithms and a principal component analysis were applied to the data. RESULTS: Differences of exhalation profiles in cancer and non-cancer patients did not persist if physiology and confounding variables were taken into account. Smoking history, inspired substance concentrations, age and gender were recognized as the most important confounding variables. Normalization onto PCO2 or BSA or correction for inspired concentrations only partially solved the problem. In contrast, previous smoking behaviour could be recognized unequivocally. CONCLUSION: Exhaled substance concentrations may depend on a variety of parameters other than the disease under investigation. Normalization and correcting parameters have to be chosen with care as compensating effects may be different from one substance to the other. Only well-founded biomarker identification, normalization and data processing will provide clinically relevant information from breath analysis.


Assuntos
Testes Respiratórios/métodos , Neoplasias Pulmonares/diagnóstico , Fumar/efeitos adversos , Adulto , Idoso , Algoritmos , Biomarcadores/análise , Estudos de Casos e Controles , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Valores de Referência , Projetos de Pesquisa/normas
20.
Anal Chim Acta ; 667(1-2): 77-82, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20441869

RESUMO

Simple or even rapid bioanalytical methods are rare, since they generally involve complicated, time-consuming sample preparation from the biological matrices like LLE or SPE. SPME provides a promising approach to overcome these limitations. The full potential of this innovative technique for medical diagnostics, pharmacotherapy or biochemistry has not been tapped yet. In-house manufactured SPME probes with polypyrrole (PPy) coating were evaluated using three antibiotics of high clinical relevance - linezolid, daptomycin, and moxifloxacin - from PBS, plasma, and whole blood. The PPy coating was characterised by scanning electron microscopy. Influences of pH, inorganic salt, and blood anticoagulants were studied for optimum performance. Extraction yields were determined from stagnant media as well as re-circulating human blood using the heart-and-lung machine model system. The PPy-SPME fibres showed high extraction yields, particularly regarding linezolid. The reproducibility of the method was optimised to achieve RSDs of 9% or 17% and 7% for SPME from stagnant or re-circulating blood using fresh and re-used fibres, respectively. The PPy-SPME approach was demonstrated to meet the requirements of therapeutic monitoring of the drugs tested, even from re-circulating blood at physiological flow rates. SPME represents a rapid and simple dual-step procedure with potency to significantly reduce the effort and expenditure of complicated sample preparations in biomedical analysis.


Assuntos
Antibacterianos/análise , Polímeros/química , Pirróis/química , Microextração em Fase Sólida/métodos , Acetamidas/análise , Acetamidas/sangue , Acetamidas/isolamento & purificação , Antibacterianos/sangue , Antibacterianos/isolamento & purificação , Anticoagulantes/química , Compostos Aza/análise , Compostos Aza/sangue , Compostos Aza/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Daptomicina/análise , Daptomicina/sangue , Daptomicina/isolamento & purificação , Fluoroquinolonas , Humanos , Concentração de Íons de Hidrogênio , Linezolida , Moxifloxacina , Oxazolidinonas/análise , Oxazolidinonas/sangue , Oxazolidinonas/isolamento & purificação , Quinolinas/análise , Quinolinas/sangue , Quinolinas/isolamento & purificação , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA