Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 8: e9099, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440373

RESUMO

Helicobacter pylori is one of the major stomach microbiome components, promoting development of inflammation and gastric cancer in humans. H. pylori has a unique ability to transform into a coccoidal form which is difficult to detect by many diagnostic methods, such as urease activity detection, and even histopathological examination. Here we present a comparison of three methods for H. pylori identification: histological assessment (with eosin, hematoxylin, and Giemsa staining), polymerase chain reaction (PCR) detection of urease (ureA specific primers), and detection by 16S rRNA gene sequencing. The study employed biopsies from the antral part of the stomach (N = 40). All samples were assessed histologically which revealed H. pylori in eight patients. Bacterial DNA isolated from the bioptates was used as a template for PCR reaction and 16S rRNA gene sequencing that revealed H. pylori in 13 and in 20 patients, respectively. Thus, 16S rRNA gene sequencing was the most sensitive method for detection of H. pylori in stomach biopsy samples.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30642930

RESUMO

Streptococcus pneumoniae is one of the leading pathogens that cause a variety of mucosal and invasive infections. With the increased emergence of multidrug-resistant S. pneumoniae, new antimicrobials with mechanisms of action different from conventional antibiotics are urgently needed. In this study, we identified a putative lysin (gp20) encoded by the Streptococcus phage SPSL1 using the LytA autolysin as a template. Molecular dissection of gp20 revealed a binding domain (GPB) containing choline-binding repeats (CBRs) that are high specificity for S. pneumoniae By fusing GPB to the CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) catalytic domain of the PlyC lysin, we constructed a novel chimeric lysin, ClyJ, with improved activity to the pneumococcal Cpl-1 lysin. No resistance was observed in S. pneumoniae strains after exposure to incrementally doubling concentrations of ClyJ for 8 continuous days in vitro In a mouse bacteremia model using penicillin G as a control, a single intraperitoneal injection of ClyJ improved the survival rate of lethal S. pneumoniae-infected mice in a dose-dependent manner. Given its high lytic activity and safety profile, ClyJ may represent a promising alternative to combat pneumococcal infections.


Assuntos
Amidoidrolases/metabolismo , Bacteriófagos/enzimologia , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Infecções Pneumocócicas/tratamento farmacológico , Streptococcus pneumoniae/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Domínio Catalítico , Modelos Animais de Doenças , Endopeptidases/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecções Pneumocócicas/prevenção & controle
3.
Viruses ; 10(11)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445722

RESUMO

Bacteriophage-derived endolysins have gained increasing attention as potent antimicrobial agents and numerous publications document the in vivo efficacy of these enzymes in various rodent models. However, little has been documented about their safety and toxicity profiles. Here, we present preclinical safety and toxicity data for two pneumococcal endolysins, Pal and Cpl-1. Microarray, and gene profiling was performed on human macrophages and pharyngeal cells exposed to 0.5 µM of each endolysin for six hours and no change in gene expression was noted. Likewise, in mice injected with 15 mg/kg of each endolysin, no physical or behavioral changes were noted, pro-inflammatory cytokine levels remained constant, and there were no significant changes in the fecal microbiome. Neither endolysin caused complement activation via the classic pathway, the alternative pathway, or the mannose-binding lectin pathway. In cellular response assays, IgG levels in mice exposed to Pal or Cpl-1 gradually increased for the first 30 days post exposure, but IgE levels never rose above baseline, suggesting that hypersensitivity or allergic reaction is unlikely. Collectively, the safety and toxicity profiles of Pal and Cpl-1 support further preclinical studies.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Endopeptidases/administração & dosagem , Endopeptidases/efeitos adversos , Fagos de Streptococcus/enzimologia , Animais , Antibacterianos/imunologia , Anticorpos Antivirais/sangue , Endopeptidases/imunologia , Endopeptidases/toxicidade , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Macrófagos/efeitos dos fármacos , Camundongos
4.
Sci Rep ; 5: 14802, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26440922

RESUMO

Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Mamíferos/imunologia , Fagos de Pseudomonas/fisiologia , Imunidade Adaptativa , Animais , Imunidade Inata , Lipopolissacarídeos/farmacologia , Macrófagos/microbiologia , Macrófagos/virologia , Masculino , Mamíferos/microbiologia , Mamíferos/virologia , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Modelos Teóricos , Fagocitose , Fagos de Pseudomonas/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Síndrome de Resposta Inflamatória Sistêmica/virologia
5.
Viruses ; 7(8): 4783-99, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26308042

RESUMO

A specific humoral response to bacteriophages may follow phage application for medical purposes, and it may further determine the success or failure of the approach itself. We present a long-term study of antibody induction in mice by T4 phage applied per os: 100 days of phage treatment followed by 112 days without the phage, and subsequent second application of phage up to day 240. Serum and gut antibodies (IgM, IgG, secretory IgA) were analyzed in relation to microbiological status of the animals. T4 phage applied orally induced anti-phage antibodies when the exposure was long enough (IgG day 36, IgA day 79); the effect was related to high dosage. Termination of phage treatment resulted in a decrease of IgA again to insignificant levels. Second administration of phage induces secretory IgA sooner than that induced by the first administrations. Increased IgA level antagonized gut transit of active phage. Phage resistant E. coli dominated gut flora very late, on day 92. Thus, the immunological response emerges as a major factor determining phage survival in the gut. Phage proteins Hoc and gp12 were identified as highly immunogenic. A low response to exemplary foreign antigens (from Ebola virus) presented on Hoc was observed, which suggests that phage platforms can be used in oral vaccine design.


Assuntos
Anticorpos Antivirais/análise , Bacteriófago T4/imunologia , Sangue/imunologia , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/virologia , Imunidade nas Mucosas , Administração Oral , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Ebolavirus/genética , Ebolavirus/imunologia , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Imunoglobulina A/análise , Imunoglobulina G/análise , Imunoglobulina M/análise , Estudos Longitudinais , Masculino , Camundongos Endogâmicos C57BL , Proteínas Estruturais Virais/imunologia
6.
Future Microbiol ; 9(7): 861-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25156375

RESUMO

AIMS: Novel anticancer strategies have employed bacteriophages as drug carriers and display platforms for anticancer agents; however, bacteriophage-based platforms maintain their natural antibacterial activity. This study provides the assessment of combined anticancer (engineered) and antibacterial (natural) phage activity in therapies. MATERIALS & METHODS: An in vivo BALB/c mouse model of 4T1 tumor growth accompanied by surgical wound infection was applied. The wounds were located in the areas of tumors. Bacteriophages (T4) were modified with anticancer Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides by phage display and injected intraperitoneally. RESULTS & CONCLUSION: Tumor growth was decreased in mice treated with YIGSR-displaying phages. The acuteness of wounds, bacterial load and inflammatory markers in phages-treated mice were markedly decreased. Thus, engineered bacteriophages combine antibacterial and anticancer activity.


Assuntos
Antibacterianos/administração & dosagem , Antineoplásicos/administração & dosagem , Infecções Bacterianas/terapia , Bacteriófago T4/genética , Terapia Biológica , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/genética , Animais , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Bacteriófago T4/metabolismo , Escherichia coli/virologia , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/metabolismo
7.
J Nanopart Res ; 15: 2068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24307860

RESUMO

ABSTRACT: A simple co-precipitation reaction between Ln3+ cations (Ln = lanthanide) and phosphate ions in the presence of polyethylene glycol (PEG), including post-treatment under hydrothermal conditions, leads to the formation of Tb3+-doped LaPO4 crystalline nanorods. The nanoparticles obtained can be successfully coated with amorphous and porous silica, forming core/shell-type nanorods. Both products reveal intensive green luminescence under UV lamp irradiation. The surface of the core/shell-type product can also be modified with -NH2 groups via silylation procedure, using 3-aminopropyltriethoxysilane as a modifier. Powder X-ray diffraction, transmission electron microscopy, and scanning electron microscopy confirm the desired structure and needle-like shape of the products synthesized. Fourier transform infrared spectroscopy and specific surface area measurements by Brunauer-Emmett-Teller method reveal a successful surface modification with amine groups of the core/shell-type nanoparticles prepared. The nanomaterials synthesized exhibit green luminescence characteristic of Tb3+ ions, as solid powders and aqueous colloids, examined by spectrofluorometry. The in vitro cytotoxicity studies reveal different degree toxicity of the products. LaPO4:Tb3+@SiO2@NH2 exhibits the smallest toxicity against B16F0 mouse melanoma cancer cells and human skin microvascular endothelial cell lines, in contrast to the most toxic LaPO4:Tb3+@SiO2.

8.
BMC Biotechnol ; 11: 59, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21627821

RESUMO

BACKGROUND: Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. RESULTS: Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. CONCLUSIONS: Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development.


Assuntos
Bacteriófago T4/isolamento & purificação , Cromatografia de Afinidade/métodos , Biblioteca de Peptídeos , Bacteriófago T4/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Glutationa/genética , Glutationa/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA