Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 219(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35670811

RESUMO

Autosomal recessive IRF7 deficiency was previously reported in three patients with single critical influenza or COVID-19 pneumonia episodes. The patients' fibroblasts and plasmacytoid dendritic cells produced no detectable type I and III IFNs, except IFN-ß. Having discovered four new patients, we describe the genetic, immunological, and clinical features of seven IRF7-deficient patients from six families and five ancestries. Five were homozygous and two were compound heterozygous for IRF7 variants. Patients typically had one episode of pulmonary viral disease. Age at onset was surprisingly broad, from 6 mo to 50 yr (mean age 29 yr). The respiratory viruses implicated included SARS-CoV-2, influenza virus, respiratory syncytial virus, and adenovirus. Serological analyses indicated previous infections with many common viruses. Cellular analyses revealed strong antiviral immunity and expanded populations of influenza- and SARS-CoV-2-specific memory CD4+ and CD8+ T cells. IRF7-deficient individuals are prone to viral infections of the respiratory tract but are otherwise healthy, potentially due to residual IFN-ß and compensatory adaptive immunity.


Assuntos
COVID-19 , Influenza Humana , Viroses , Vírus , Adulto , COVID-19/genética , Humanos , Influenza Humana/genética , SARS-CoV-2
2.
Pulm Circ ; 12(2): e12052, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35734542

RESUMO

Very rare cases of pulmonary arterial hypertension (PAH) have been linked to homozygous or compound heterozygous von Hippel-Lindau (VHL) tumor suppressor gene mutations, while heterozygous VHL mutations lead to VHL tumor syndrome. Although those entities are defined, the genotype-phenotype correlation is incompletely understood, and patient management recommendations are lacking. Here, we describe a case of severe early-onset PAH due to a so-far unreported compound heterozygous association of VHL mutations and review the existing data.

3.
J Perinat Med ; 50(4): 476-485, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34973051

RESUMO

OBJECTIVES: The possibility to isolate fetal cells from pregnant women cervical samples has been discussed for five decades but is not currently applied in clinical practice. This study aimed at offering prenatal genetic diagnosis from fetal cells obtained through noninvasive exocervical sampling and immuno-sorted based on expression of HLA-G. METHODS: We first developed and validated robust protocols for cell detection and isolation on control cell lines expressing (JEG-3) or not (JAR) the HLA-G antigen, a specific marker for extravillous trophoblasts. We then applied these protocols to noninvasive exocervical samples collected from pregnant women between 6 and 14 weeks of gestational age. Sampling was performed through insertion and rotation of a brush at the ectocervix close to the external os of the endocervical canal. Finally, we attempted to detect and quantify trophoblasts in exocervical samples from pregnant women by ddPCR targeting the male SRY locus. RESULTS: For immunohistochemistry, a strong specific signal for HLA-G was observed in the positive control cell line and for rare cells in exocervical samples, but only in non-fixative conditions. HLA-G positive cells diluted in HLA-G negative cells were isolated by flow cytometry or magnetic cell sorting. However, no HLA-G positive cells could be recovered from exocervical samples. SRY gene was detected by ddPCR in exocervical samples from male (50%) but also female (27%) pregnancies. CONCLUSIONS: Our data suggest that trophoblasts are too rarely and inconstantly present in noninvasive exocervical samples to be reliably retrieved by standard immunoisolation techniques and therefore cannot replace the current practice for prenatal screening and diagnosis.


Assuntos
Antígenos HLA-G , Teste Pré-Natal não Invasivo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Gravidez , Diagnóstico Pré-Natal/métodos , Trofoblastos
4.
Cell Cycle ; 20(23): 2452-2464, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34720062

RESUMO

Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.


Assuntos
Transição Epitelial-Mesenquimal , Mitose , Animais , Células Epiteliais/metabolismo , Gastrulação , Camundongos , Morfogênese
5.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33497357

RESUMO

Four endemic human coronaviruses (HCoVs) are commonly associated with acute respiratory infection in humans. B cell responses to these "common cold" viruses remain incompletely understood. Here we report a comprehensive analysis of CoV-specific antibody repertoires in 231 children and 1168 adults using phage immunoprecipitation sequencing. Seroprevalence of antibodies against endemic HCoVs ranged between approximately 4% and 27% depending on the species and cohort. We identified at least 136 novel linear B cell epitopes. Antibody repertoires against endemic HCoVs were qualitatively different between children and adults in that anti-HCoV IgG specificities more frequently found among children targeted functionally important and structurally conserved regions of the spike, nucleocapsid, and matrix proteins. Moreover, antibody specificities targeting the highly conserved fusion peptide region and S2' cleavage site of the spike protein were broadly cross-reactive with peptides of epidemic human and nonhuman coronaviruses. In contrast, an acidic tandem repeat in the N-terminal region of the Nsp3 subdomain of the HCoV-HKU1 polyprotein was the predominant target of antibody responses in adult donors. Our findings shed light on the dominant species-specific and pan-CoV target sites of human antibody responses to coronavirus infection, thereby providing important insights for the development of prophylactic or therapeutic monoclonal antibodies and vaccine design.


Assuntos
Anticorpos Antivirais/isolamento & purificação , Resfriado Comum/virologia , Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Doenças Endêmicas , Adulto , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Antígenos Virais/sangue , Antígenos Virais/imunologia , Criança , Pré-Escolar , Resfriado Comum/sangue , Resfriado Comum/epidemiologia , Resfriado Comum/imunologia , Coronavirus/isolamento & purificação , Infecções por Coronavirus/sangue , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Reações Cruzadas , Epitopos de Linfócito B/sangue , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Domínios Proteicos/imunologia , Estudos Retrospectivos , Estudos Soroepidemiológicos , Proteínas Virais/imunologia
6.
Methods Mol Biol ; 2179: 135-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939718

RESUMO

Epithelial-mesenchymal transition (EMT) is often studied in pathological contexts, such as cancer or fibrosis. This chapter focuses on physiological EMT that allows the separation of germ layers during mouse embryo gastrulation. In order to record individual cells behavior with high spatial and temporal resolution live imaging as they undergo EMT, it is very helpful to label the cells of interest in a mosaic fashion so as to facilitate cell segmentation and quantitative image analysis. This protocol describes the isolation, culture, and live imaging of E6.5-E7.5 mouse embryos mosaically labeled in the epiblast, the epithelium from which mesoderm and endoderm layers arise through EMT at gastrulation.


Assuntos
Técnicas de Cultura Embrionária/métodos , Transição Epitelial-Mesenquimal , Gastrulação , Imagem Óptica/métodos , Animais , Endoderma/citologia , Mesoderma/citologia , Camundongos , Imagem Óptica/instrumentação , Coloração e Rotulagem/métodos
7.
Mol Metab ; 40: 101027, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32480041

RESUMO

OBJECTIVES: Apoptosis-Inducing Factor (AIF) is a protein involved in mitochondrial electron transport chain assembly/stability and programmed cell death. The relevant role of this protein is underlined because mutations altering mitochondrial AIF properties result in acute pediatric mitochondriopathies and tumor metastasis. By generating an original AIF-deficient mouse strain, this study attempted to analyze, in a single paradigm, the cellular and developmental metabolic consequences of AIF loss and the subsequent oxidative phosphorylation (OXPHOS) dysfunction. METHODS: We developed a novel AIF-deficient mouse strain and assessed, using molecular and cell biology approaches, the cellular, embryonic, and adult mice phenotypic alterations. Additionally, we conducted ex vivo assays with primary and immortalized AIF knockout mouse embryonic fibroblasts (MEFs) to establish the cell death characteristics and the metabolic adaptive responses provoked by the mitochondrial electron transport chain (ETC) breakdown. RESULTS: AIF deficiency destabilized mitochondrial ETC and provoked supercomplex disorganization, mitochondrial transmembrane potential loss, and high generation of mitochondrial reactive oxygen species (ROS). AIF-/Y MEFs counterbalanced these OXPHOS alterations by mitochondrial network reorganization and a metabolic reprogramming toward anaerobic glycolysis illustrated by the AMPK phosphorylation at Thr172, the overexpression of the glucose transporter GLUT-4, the subsequent enhancement of glucose uptake, and the anaerobic lactate generation. A late phenotype was characterized by the activation of P53/P21-mediated senescence. Notably, approximately 2% of AIF-/Y MEFs diminished both mitochondrial mass and ROS levels and spontaneously proliferated. These cycling AIF-/Y MEFs were resistant to caspase-independent cell death inducers. The AIF-deficient mouse strain was embryonic lethal between E11.5 and E13.5 with energy loss, proliferation arrest, and increased apoptotic levels. Contrary to AIF-/Y MEFs, the AIF KO embryos were unable to reprogram their metabolism toward anaerobic glycolysis. Heterozygous AIF+/- females displayed progressive bone marrow, thymus, and spleen cellular loss. In addition, approximately 10% of AIF+/- females developed perinatal hydrocephaly characterized by brain development impairment, meningeal fibrosis, and medullar hemorrhages; those mice died 5 weeks after birth. AIF+/- with hydrocephaly exhibited loss of ciliated epithelium in the ependymal layer. This phenotype was triggered by the ROS excess. Accordingly, it was possible to diminish the occurrence of hydrocephalus AIF+/- females by supplying dams and newborns with an antioxidant in drinking water. CONCLUSIONS: In a single knockout model and at 3 different levels (cell, embryo, and adult mice) we demonstrated that by controlling the mitochondrial OXPHOS/metabolism, AIF is a key factor regulating cell differentiation and fate. Additionally, by providing new insights into the pathological consequences of mitochondrial OXPHOS dysfunction, our new findings pave the way for novel pharmacological strategies.


Assuntos
Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Animais , Apoptose/fisiologia , Caspases/metabolismo , Respiração Celular , Feminino , Fibroblastos/metabolismo , Engenharia Genética/métodos , Glicólise/genética , Hidrocefalia/metabolismo , Masculino , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos/genética , Mitocôndrias/metabolismo , Modelos Animais , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
8.
Dev Biol ; 364(2): 192-201, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22342906

RESUMO

Pten, the potent tumor suppressor, is a lipid phosphatase that is best known as a regulator of cell proliferation and cell survival. Here we show that mouse embryos that lack Pten have a striking set of morphogenetic defects, including the failure to correctly specify the anterior-posterior body axis, that are not caused by changes in proliferation or cell death. The majority of Pten null embryos express markers of the primitive streak at ectopic locations around the embryonic circumference, rather than at a single site at the posterior of the embryo. Epiblast-specific deletion shows that Pten is not required in the cells of the primitive streak; instead, Pten is required for normal migration of cells of the Anterior Visceral Endoderm (AVE), an extraembryonic organizer that controls the position of the streak. Cells of the wild-type AVE migrate within the visceral endoderm epithelium from the distal tip of the embryo to a position adjacent to the extraembryonic region. In all Pten null mutants, AVE cells move a reduced distance and disperse in random directions, instead of moving as a coordinated group to the anterior of the embryo. Aberrant AVE migration is associated with the formation of ectopic F-actin foci, which indicates that absence of Pten disrupts the actin-based migration of these cells. After the initiation of gastrulation, embryos that lack Pten in the epiblast show defects in the migration of mesoderm and/or endoderm. The findings suggest that Pten has an essential and general role in the control of mammalian collective cell migration.


Assuntos
Padronização Corporal , Movimento Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Animais , Endoderma/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , PTEN Fosfo-Hidrolase/genética , Gravidez
9.
J Immunol ; 187(3): 1475-85, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21709160

RESUMO

The peptide F2L was previously characterized as a high-affinity natural agonist for the human formyl peptide receptor (FPR) 3. F2L is an acetylated 21-aa peptide corresponding with the N terminus of the intracellular heme-binding protein 1 (HEBP1). In the current work, we have investigated which proteases were able to generate the F2L peptide from its precursor HEBP1. Structure-function analysis of F2L identified three amino acids, G(3), N(7), and S(8), as the most important for interaction of the peptide with FPR3. We expressed a C-terminally His-tagged form of human HEBP1 in yeast and purified it to homogeneity. The purified protein was used as substrate to identify proteases generating bioactive peptides for FPR3-expressing cells. A conditioned medium from human monocyte-derived macrophages was able to generate bioactivity from HEBP1, and this activity was inhibited by pepstatin A. Cathepsin D was characterized as the protease responsible for HEBP1 processing, and the bioactive product was identified as F2L. We have therefore determined how F2L, the specific agonist of FPR3, is generated from the intracellular protein HEBP1, although it is unknown in which compartment the processing by cathepsin D occurs in vivo.


Assuntos
Proteínas de Transporte/metabolismo , Catepsina D/fisiologia , Fatores Quimiotáticos/agonistas , Hemeproteínas/metabolismo , Peptídeos/agonistas , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/imunologia , Receptores de Formil Peptídeo/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Proteínas de Transporte/biossíntese , Catepsina D/deficiência , Células Cultivadas , Fatores Quimiotáticos/biossíntese , Fatores Quimiotáticos/metabolismo , Cricetinae , Cricetulus , Proteínas Ligantes de Grupo Heme , Hemeproteínas/biossíntese , Humanos , Ligantes , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peptídeos/metabolismo , Ligação Proteica/imunologia , Precursores de Proteínas/biossíntese , Receptores de Formil Peptídeo/biossíntese
10.
J Immunol ; 178(3): 1450-6, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17237393

RESUMO

F2L (formylpeptide receptor (FPR)-like (FPRL)-2 ligand), a highly conserved acetylated peptide derived from the amino-terminal cleavage of heme-binding protein, is a potent chemoattractant for human monocytes and dendritic cells, and inhibits LPS-induced human dendritic cell maturation. We recently reported that F2L is able to activate the human receptors FPRL-1 and FPRL2, two members of the FPR family, with highest selectivity and affinity for FPRL2. To facilitate delineation of mechanisms of F2L action in vivo, we have now attempted to define its mouse receptors. This is complicated by the nonequivalence of the human and mouse FPR gene families (three vs at least eight members, respectively). When cell lines were transfected with plasmids encoding the eight mouse receptors, only the one expressing the receptor Fpr2 responded to F2L (EC(50) approximately 400 nM for both human and mouse F2L in both calcium flux and cAMP inhibition assays). This value is similar to F2L potency at human FPRL1. Consistent with this, mouse neutrophils, which like macrophages and dendritic cells express Fpr2, responded to human and mouse F2L in both calcium flux and chemotaxis assays with EC(50) values similar to those found for Fpr2-expressing cell lines ( approximately 500 nM). Moreover, neutrophils from mice genetically deficient in Fpr2 failed to respond to F2L. Thus, Fpr2 is a mouse receptor for F2L, and can be targeted for the study of F2L action in mouse models.


Assuntos
Fatores Quimiotáticos/fisiologia , Neutrófilos/fisiologia , Receptores de Formil Peptídeo/metabolismo , Animais , Cálcio , Proteínas de Transporte , Quimiotaxia , Proteínas Ligantes de Grupo Heme , Hemeproteínas , Humanos , Camundongos , Peptídeos
11.
J Exp Med ; 201(1): 83-93, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15623572

RESUMO

Chemotaxis of dendritic cells (DCs) and monocytes is a key step in the initiation of an adequate immune response. Formyl peptide receptor (FPR) and FPR-like receptor (FPRL)1, two G protein-coupled receptors belonging to the FPR family, play an essential role in host defense mechanisms against bacterial infection and in the regulation of inflammatory reactions. FPRL2, the third member of this structural family of chemoattractant receptors, is characterized by its specific expression on monocytes and DCs. Here, we present the isolation from a spleen extract and the functional characterization of F2L, a novel chemoattractant peptide acting specifically through FPRL2. F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein, an intracellular tetrapyrolle-binding protein. The peptide binds and activates FPRL2 in the low nanomolar range, which triggers intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases through the G(i) class of heterotrimeric G proteins. When tested on monocytes and monocyte-derived DCs, F2L promotes calcium mobilization and chemotaxis. Therefore, F2L appears as a new natural chemoattractant peptide for DCs and monocytes, and the first potent and specific agonist of FPRL2.


Assuntos
Cálcio/metabolismo , Fatores Quimiotáticos/genética , Quimiotaxia/imunologia , Células Dendríticas/imunologia , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Anticorpos Monoclonais , Proteínas de Transporte/metabolismo , Fatores Quimiotáticos/metabolismo , Quimiotaxia/genética , Primers do DNA , Células Dendríticas/metabolismo , Eletroforese em Gel de Poliacrilamida , Citometria de Fluxo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/metabolismo , Humanos , Ligantes , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos , Receptores de Formil Peptídeo/agonistas , Receptores de Lipoxinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
12.
J Exp Med ; 198(7): 977-85, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14530373

RESUMO

Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein-coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42-p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.


Assuntos
Células Apresentadoras de Antígenos/fisiologia , Quimiocinas/fisiologia , Receptores de Quimiocinas/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Movimento Celular , Quimiocinas/química , Quimiocinas/genética , Quimiocinas/isolamento & purificação , Células Dendríticas/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA