Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 37: 101735, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33011677

RESUMO

The activity of Thioredoxin-1 (Trx-1) is adjusted by the balance of its monomeric, active and its dimeric, inactive state. The regulation of this balance is not completely understood. We have previously shown that the cytoplasmic domain of the transmembrane protein A Disintegrin And Metalloprotease 17 (ADAM17cyto) binds to Thioredoxin-1 (Trx-1) and the destabilization of this interaction favors the dimeric state of Trx-1. Here, we investigate whether ADAM17 plays a role in the conformation and activation of Trx-1. We found that disrupting the interacting interface with Trx-1 by a site-directed mutagenesis in ADAM17 (ADAM17cytoF730A) caused a decrease of Trx-1 reductive capacity and activity. Moreover, we observed that ADAM17 overexpressing cells favor the monomeric state of Trx-1 while knockdown cells do not. As a result, there is a decrease of cell oxidant levels and ADAM17 sheddase activity and an increase in the reduced cysteine-containing peptides in intracellular proteins in ADAM17cyto overexpressing cells. A mechanistic explanation that ADAM17cyto favors the monomeric, active state of Trx-1 is the formation of a disulfide bond between Cys824 at the C-terminal of ADAM17cyto with the Cys73 of Trx-1, which is involved in the dimerization site of Trx-1. In summary, we propose that ADAM17 is able to modulate Trx-1 conformation affecting its activity and intracellular redox state, bringing up a novel possibility for positive regulation of thiol isomerase activity in the cell by mammalian metalloproteinases.


Assuntos
Proteína ADAM17 , Cisteína , Tiorredoxinas , Cisteína/metabolismo , Células HEK293 , Humanos , Conformação Molecular , Oxirredução , Compostos de Sulfidrila , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Mol Cell Endocrinol ; 484: 1-14, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30703486

RESUMO

Nuclear receptors (NRs) are a superfamily of ligand-dependent transcription factors that modulate several biological processes. Traditionally, modulation of NRs has been focused on the development of ligands that recognize and bind to the ligand binding domain (LBD), resulting in activation or repression of transcription through the recruitment of coregulators. However, for more severe diseases, such as breast and prostate cancer, the conventional treatment addressing LBD modulation is not always successful, due to tumor resistance. To overcome these challenges and aiming to modulate NR activity by inhibiting the NR-DNA interaction, new studies focus on the development of molecules targeting alternative sites and domains on NRs. Here, we discuss two different approaches for this alternative NR modulation: one targeting the NR DNA binding domain (DBD); and the other targeting the DNA sites recognized by NRs. Our aim is to present the challenges and perspectives for developing specific inhibitors for each purpose, alongside with already reported examples.


Assuntos
DNA/química , DNA/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Sítios de Ligação/efeitos dos fármacos , Humanos , Inativação Metabólica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA