Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069036

RESUMO

The DNA origami method has revolutionized the field of DNA nanotechnology since its introduction. These nanostructures, with their customizable shape and size, addressability, nontoxicity, and capacity to carry bioactive molecules, are promising vehicles for therapeutic delivery. Different approaches have been developed for manipulating and folding DNA origami, resulting in compact lattice-based and wireframe designs. Platinum-based complexes, such as cisplatin and phenanthriplatin, have gained attention for their potential in cancer and antiviral treatments. Phenanthriplatin, in particular, has shown significant antitumor properties by binding to DNA at a single site and inhibiting transcription. The present work aims to study wireframe DNA origami nanostructures as possible carriers for platinum compounds in cancer therapy, employing both cisplatin and phenanthriplatin as model compounds. This research explores the assembly, platinum loading capacity, stability, and modulation of cytotoxicity in cancer cell lines. The findings indicate that nanomolar quantities of the ball-like origami nanostructure, obtained in the presence of phenanthriplatin and therefore loaded with that specific drug, reduced cell viability in MCF-7 (cisplatin-resistant breast adenocarcinoma cell line) to 33%, while being ineffective on the other tested cancer cell lines. The overall results provide valuable insights into using wireframe DNA origami as a highly stable possible carrier of Pt species for very long time-release purposes.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Cisplatino/farmacologia , Platina/farmacologia , Preparações Farmacêuticas , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
2.
Nanoscale Adv ; 5(19): 5340-5351, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767039

RESUMO

Platinum-based anticancer drugs are common in chemotherapy, but problems such as systemic toxicity and acquired resistance of some tumors hamper their clinical applications and therapeutic efficacy. It is necessary to synthesize Pt-based drugs and explore strategies to reduce side effects and improve pharmacokinetic profiles. Photo-responsive chemotherapeutics have emerged as an alternative strategy against several cancers, as photoactivation offers spatial selectivity and fewer side effects. Here, we combine chemical synthesis and nanotechnology to create a multifunctional platinum drug delivery system based on the novel metal complex [Pt(ppy)(curc)] (ppy = deprotonated 2-phenylpyridine, curc = deprotonated curcumin)] embodying the naturally occurring bioactive molecule, curcumin. The ultrasonication method coupled with the layer-by-layer technology was employed to produce nanocolloids, which demonstrated a good biocompatibility, higher solubility in aqueous solution, stability, large drug loading, and good biological activity in comparison with the free drug. In vitro release experiments revealed that the polymeric nanoformulation is relatively stable under physiological conditions (pH = 7.4 and 37 °C) but sensitive to acidic environments (pH = 5.6 and 37 °C) which would trigger the release of the loaded drug. Our approach modifies the bioavailability of this Pt-based drug increasing its therapeutic action in terms of both cytotoxic and anti-metastasis effects.

3.
Bioinorg Chem Appl ; 2023: 5564624, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727647

RESUMO

Pancreatic cancer is one of the most lethal malignancies with an increasing incidence and a high mortality rate, due to its rapid progression, invasiveness, and resistance to anticancer therapies. In this work, we evaluated the antiproliferative and antimigratory activities of the two organometallic compounds, [Pt(η1-C2H4-OMe)(DMSO)(phen)]Cl (1) and [Pt(η1-C2H4-OEt)(DMSO)(phen)]Cl (2), on three human pancreatic ductal adenocarcinoma cell lines with different sensitivity to cisplatin (Mia PaCa-2, PANC-1, and YAPC). The two cationic analogues showed superimposable antiproliferative effects on the tested cells, without significant differences depending on alkyl chain length (Me or Et). On the other hand, they demonstrated to be more effective than cisplatin, especially on YAPC cancer cells. For the interesting cytotoxic activity observed on YAPC, further biological assays were performed, on this cancer cell line, to evaluate the apoptotic and antimetastatic properties of the considered platinum compounds (1 and 2). The cytotoxicity of 1 and 2 compounds appeared to be related to their intracellular accumulation, which was much faster than that of cisplatin. Both 1 and 2 compounds significantly induced apoptosis and cell cycle arrest, with a high accumulation of sub-G1 phase cells, compared to cisplatin. Moreover, phenanthroline-containing complexes caused a rapid loss of mitochondria membrane potential, ΔΨM, if compared to cisplatin, probably due to their cationic and lipophilic properties. On 3D tumor spheroids, 1 and 2 significantly reduced migrated area more than cisplatin, confirming an antimetastatic ability.

4.
Plant Physiol Biochem ; 196: 281-290, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36736010

RESUMO

We report about the response of Arabidopsis thaliana to chronic and temporary Cd2+ stress, and the Cd2+ induced activation of ER stress and unfolded protein response (UPR). Cd2+-induced UPR proceeds mainly through the bZIP60 arm, which in turn activates relevant ER stress marker genes such as BiP3, CNX, PDI5 and ERdj3B in a concentration- (chronic stress) or time- (temporary stress) dependent manner. A more severe Cd-stress triggers programmed cell death (PCD) through the activation of the NAC089 transcription factor. Toxic effects of Cd2+ exposure are reduced in the Atbzip28/bzip60 double mutant in terms of primary root length and fresh shoot weight, likely due to reduced UPR and PCD activation. We also hypothesised that the enhanced Cd2+ tolerance of the Atbzip28/bzip60 double mutant is due to an increase in brassinosteroids signaling, since the amount of the brassinosteroid insensitive1 receptor (BRI1) protein decreases under Cd2+ stress only in Wt plants. These data highlight the complexity of the UPR pathway, since the ER stress response is strictly related to the type of the treatment applied and the multifaceted connections of ER signaling. The reduced sensing of Cd2+ stress in plants with UPR defects can be used as a novel strategy for phytoremediation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resposta a Proteínas não Dobradas/genética , Estresse do Retículo Endoplasmático/genética , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo
5.
Bioinorg Chem Appl ; 2022: 9571217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502219

RESUMO

This study aimed to evaluate the therapeutic efficacy of low-intensity visible light responsive nanocolloids of a Pt-based drug using a 2D and three-dimensional (3D) in vitro cancer cell model. Biocompatible and biodegradable polymeric nanocolloids, obtained using the ultrasonication method coupled with Layer by Layer technology, were characterized in terms of size (100 ± 20 nm), physical stability, drug loading (78%), and photoactivation through spectroscopy studies. The in vitro biological effects were assessed in terms of efficacy, apoptosis induction, and DNA-Pt adducts formation. Biological experiments were performed both in dark and under visible light irradiation conditions, exploiting the complex photochemical properties. The light-stimuli responsive nanoformulation gave a significant enhancement in drug bioactivity. This allowed us to achieve satisfying results by using nanomolar drug concentration (50 nM), which was ineffective in darkness condition. Furthermore, our nanocolloids were validated in 3D in vitro spheroids using confocal microscopy and cytofluorimetric assay to compare their behavior on culture in 2D monolayers. The obtained results confirmed that these nanocolloids are promising tools for delivering Pt-based drugs.

6.
Sci Rep ; 12(1): 5973, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396514

RESUMO

Xylella fastidiosa is a xylem-limited bacterium causing a range of economically important plant diseases in hundreds of crops. Over the last decade, a severe threat due to Olive Quick Decline Syndrome (OQDS), caused by Xylella fastidiosa subspecies pauca, affected the Salento olive groves (Apulia, South-East Italy). Very few phyto-therapeutics, including a Zn/Cu citric acid biocomplex foliar treatment, were evaluated to mitigate this disease. However, the traditional foliar applications result in the agro-actives reaching only partially their target. Therefore the development of novel endo-therapeutic systems was suggested. Metabolite fingerprinting is a powerful method for monitoring both, disease progression and treatment effects on the plant metabolism, allowing biomarkers detection. We performed, for the first time, short-term monitoring of metabolic pathways reprogramming for infected Ogliarola salentina and Cima di Melfi olive trees after precision intravascular biocomplex delivery using a novel injection system. Upon endo therapy, we observed specific variations in the leaf content of some metabolites. In particular, the 1H NMR-based metabolomics approach showed, after the injection, a significant decrease of both the disease biomarker quinic acid and mannitol with simultaneous increase of polyphenols and oleuropein related compounds in the leaf's extracts. This combined metabolomics/endo-therapeutic methodology provided useful information in the comprehension of plant physiology for future applications in OQDS control.


Assuntos
Metabolômica , Olea , Xylella , Metabolômica/métodos , Olea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espectroscopia de Prótons por Ressonância Magnética/métodos , Xylella/metabolismo
7.
J Inorg Biochem ; 226: 111660, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801970

RESUMO

Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2'-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5'-(2'-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2- (3; dGTP = 5'-(2'-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1-3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds.


Assuntos
Membrana Celular/metabolismo , Citotoxinas , Guanosina , Compostos Organoplatínicos , Transporte Biológico , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Guanosina/análogos & derivados , Guanosina/química , Guanosina/farmacocinética , Guanosina/farmacologia , Células HeLa , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia
8.
Pharmaceutics ; 13(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946459

RESUMO

Starting from the [PtCl(η1-C2H4OMe)(phen)] (phen = 1,10-phenanthroline, 1) platinum(II) precursor, we synthesized and characterized by multinuclear NMR new [Pt(η1-C2H4OMe)(L)(phen)]+ (L = NH3, 2; DMSO, 3) complexes. These organometallic species, potentially able to interact with cell membrane organic cation transporters (OCT), violating some of the classical rules for antitumor activity of cisplatin analogues, were evaluated for their cytotoxicity. Interestingly, despite both complexes 2 and 3 resulting in greater cell uptake than cisplatin in selected tumor cell lines, only 3 showed comparable or higher antitumor activity. General low cytotoxicity of complex 2 in the tested cell lines (SH-SY5Y, SK-OV-3, Hep-G2, Caco-2, HeLa, MCF-7, MG-63, ZL-65) appeared to depend on its stability towards solvolysis in neutral water, as assessed by NMR monitoring. Differently, the [Pt(η1-C2H4OMe)(DMSO)(phen)]+ (3) complex was easily hydrolyzed in neutral water, resulting in a comparable or higher cytotoxicity in cancer cells with respect to cisplatin. Further, both IC50 values and the uptake profiles of the active complex appeared quite different in the used cell lines, suggesting the occurrence of diversified biological effects. Nevertheless, further studies on the metabolism of complex 3 should be performed before planning its possible use in tissue- and tumor-specific drug design.

9.
J Inorg Biochem ; 215: 111334, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341588

RESUMO

In the present study we have studied the incorporation and release of selenite ions (SeO32-) in hydroxyapatite nanoparticles for the treatment of bone tumors. Two types of selenium-doped hydroxyapatite (HASe) nanoparticles (NPs) with a nominal Se/(P + Se) molar ratio ranging from 0.01 up to 0.40 have been synthesized by a new and mild wet method. The two series of samples were thoroughly characterized and resulted to be slightly different in chemical composition, but they had similar properties in terms of morphology and degree of crystallinity. Selenium release from HASe was investigated under neutral and acidic conditions to simulate both healthy tissues and the low-pH environment surrounding a tumor mass, respectively. The comparison of the release profiles at two pH values clearly showed the possibility of modulating the Se release by simply changing the amount of Se in the HASe particles. The correlation between the physicochemical properties of HASe and their dissolution as a function of pH has been also investigated to facilitate future application of the NPs as chemotherapeutic adjuvant agents. Finally, the cytotoxic activity of HASe was evaluated using prostate (PC3) and breast (MDA-MB-231) cancer cells as well as healthy human bone marrow stem cells (hBMSc). HASe NPs exerted a good cytocompatibility at low concentration of Se but, with high Se doping concentration, they displayed strong cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Durapatita/química , Nanopartículas/química , Selênio/química , Antineoplásicos/química , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Durapatita/farmacologia , Humanos , Microscopia Eletrônica de Transmissão/métodos , Células PC-3 , Selênio/farmacologia , Óxidos de Selênio/química , Difração de Raios X/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-32671043

RESUMO

Wine grape pomace, the by-product of wine making, is a source of polyphenols, metals, and organic acids, and may be exploited for the production of functional beverages. Among red wines, Primitivo and Negramaro varieties possess an interesting amount of polyphenolic compounds and other chemicals. Consequently, study of the biological activity of Primitivo and Negramaro vinification by-products is of great interest as well as optimizing the extraction of its bioactive components. In order to stabilize the grape pomace, different methods of drying grape pomace were tested. After stabilization of the pomace, the grape skins were manually separated from the seeds and any woody parts. The chemical characterizations of acidified alcoholic (methanol/ethanol) and water extracts and either microwave-assisted or ultrasound-assisted extractions of separated grape skins were compared. Besides that, the in vitro antioxidant activity of wine pomace skin extracts was also investigated as Trolox equivalents antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC). Overall, the alcoholic extractions were found to be the most effective for recovering phenolic compounds, when compared with those in water. Ultrasound- and microwave-assisted extraction of pomace skin using acidified water allowed the highest TEAC value. Taking into account the water extraction result, in order to reuse grape pomace skins to produce a functional beverage, we utilized them in combination with black tea, karkadè (Hibiscus sabdariffa L.), or rooibos (Aspalathus linearis Burm.) to produce an infusion. The combination of grape skins and black tea showed the highest ratio of total phenol content to antioxidant activity. Moreover, skin isolated from pomace, with or without black tea infusions, were shown to have anti-inflammatory capacity in human cell culture. Our results raise the value of grape skin pomace as a rich source of bioactive compounds with antioxidant and anti-inflammatory activity and suggest its exploitation as an ingredient for functional beverages.

11.
Sci Rep ; 10(1): 9052, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32494059

RESUMO

Dengue virus (DENV) causes 390 million infections per year. Infections can be asymptomatic or range from mild fever to severe haemorrhagic fever and shock syndrome. Currently, no effective antivirals or safe universal vaccine is available. In the present work we tested different gold nanoparticles (AuNP) coated with ligands ω-terminated with sugars bearing multiple sulfonate groups. We aimed to identify compounds with antiviral properties due to irreversible (virucidal) rather than reversible (virustatic) inhibition. The ligands varied in length, in number of sulfonated groups as well as their spatial orientation induced by the sugar head groups. We identified two candidates, a glucose- and a lactose-based ligand showing a low EC50 (effective concentration that inhibit 50% of the viral activity) for DENV-2 inhibition, moderate toxicity and a virucidal effect in hepatocytes with titre reduction of Median Tissue Culture Infectious Dose log10TCID50 2.5 and 3.1. Molecular docking simulations complemented the experimental findings suggesting a molecular rationale behind the binding between sulfonated head groups and DENV-2 envelope protein.


Assuntos
Antivirais/química , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Hep G2 , Hepatócitos/virologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Células Vero
12.
Plants (Basel) ; 8(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035723

RESUMO

Xylella fastidiosa subsp. pauca is a xylem-limited bacterial phytopathogen currently found associated on many hectares with the "olive quick decline syndrome" in the Apulia region (Southern Italy), and the cultivars Ogliarola salentina and Cellina di Nardò result in being particularly sensitive to the disease. In order to find compounds showing the capability of reducing the population cell density of the pathogen within the leaves, we tested, in some olive orchards naturally-infected by the bacterium, a zinc-copper-citric acid biocomplex, namely Dentamet®, by spraying it to the crown, once per month, during spring and summer. The occurrence of the pathogen in the four olive orchards chosen for the trial was molecularly assessed. A 1H NMR metabolomic approach, in conjunction with a multivariate statistical analysis, was applied to investigate the metabolic pattern of both infected and treated adult olive cultivars, Ogliarola salentina and Cellina di Nardò trees, in two sampling periods, performed during the first year of the trial. For both cultivars and sampling periods, the orthogonal partial least squares discriminant analysis (OPLS-DA) gave good models of separation according to the treatment application. In both cultivars, some metabolites such as quinic acid, the aldehydic form of oleoeuropein, ligstroside and phenolic compounds, were consistently found as discriminative for the untreated olive trees in comparison with the Dentamet®-treated trees. Quinic acid, a precursor of lignin, was confirmed as a disease biomarker for the olive trees infected by X. fastidiosa subsp. pauca. When treated with Dentamet®, the two cultivars showed a distinct response. A consistent increase in malic acid was observed for the Ogliarola salentina trees, whereas in the Cellina di Nardò trees the treatments attenuate the metabolic response to the infection. To note that in Cellina di Nardò trees at the first sampling, an increase in γ-aminobutyric acid (GABA) was observed. This study highlights how the infection incited by X. fastidiosa subsp. pauca strongly modifies the overall metabolism of olive trees, and how a zinc-copper-citric acid biocomplex can induce an early re-programming of the metabolic pathways in the infected trees.

13.
Cancers (Basel) ; 11(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626032

RESUMO

BACKGROUND: Cisplatin (CDDP) is widely used in treatment of cancer, yet patients often develop resistance with consequent therapeutical failure. In CDDP-resistant cells alterations of endocytosis and lysosomal functionality have been revealed, although their causes and contribution to therapy response are unclear. METHODS: We investigated the role of RAB7A, a key regulator of late endocytic trafficking, in CDDP-resistance by comparing resistant and sensitive cells using western blotting, confocal microscopy and real time PCR. Modulation of RAB7A expression was performed by transfection and RNA interference, while CDDP sensitivity and intracellular accumulation were evaluated by viability assays and chemical approaches, respectively. Also extracellular vesicles were purified and analyzed. Finally, correlations between RAB7A and chemotherapy response was investigated in human patient samples. RESULTS: We demonstrated that down-regulation of RAB7A characterizes the chemoresistant phenotype, and that RAB7A depletion increases CDDP-resistance while RAB7A overexpression decreases it. In addition, increased production of extracellular vesicles is modulated by RAB7A expression levels and correlates with reduction of CDDP intracellular accumulation. CONCLUSIONS: We demonstrated, for the first time, that RAB7A regulates CDDP resistance determining alterations in late endocytic trafficking and drug efflux through extracellular vesicles.

14.
Anticancer Agents Med Chem ; 17(11): 1508-1518, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28748756

RESUMO

BACKGROUND: Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. OBJECTIVE: To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. METHOD: Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. RESULTS: Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. CONCLUSION: Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cisplatino/farmacologia , Medicago/química , Saponinas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Saponinas/síntese química , Saponinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Heliyon ; 2(2): e00075, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27441254

RESUMO

The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus) were compared with the native warty crab (Eriphia verrucosa) and the commercially edible crab (Cancer pagurus). The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. In the blue crab, protein content was significantly lower than in the other two species, while its carbon content resulted lower than that characterizing only the warty crab. Among micro-elements, Ba, Cr, Cu, Li, Mn, Ni, and Pb showed extremely low concentrations and negligible among-species differences. Significant inter-specific differences were observed for Na, Sr, V, Ba, Cd and Zn; in particular, cadmium and zinc were characterized in the blue crab by concentrations significantly lower than in the other two species. The analysis of the available literature on the three species indicated a general lack of comparable information on their elemental composition. The need to implement extended elemental fingerprinting techniques for shellfish quality assessment is discussed, in view of other complementary profiling methods such as NMR-based metabolomics.

16.
J Inorg Biochem ; 163: 143-146, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27421694

RESUMO

In this work, we assessed the capacity of RNA polymerases to use platinated ribonucleotides as substrates for RNA synthesis by testing the incorporation of the model compound [Pt(dien)(N7-5'-GTP)] (dien=diethylenetriamine; GTP=5'-guanosine triphosphate) into a natural RNA sequence. The yield of in vitro transcription operated by T7 RNA polymerase, on the LacZ (Escherichia coli gene encoding for ß-galactosidase) sequence, decreases progressively with decreasing the concentration of natural GTP, in favor of the platinated nucleotide, [Pt(dien)(N7-5'-GTP)]. Comparison of the T7 RNA polymerase transcription activities for [Pt(dien)(N7-5'-GTP)] compound incorporation reaction test, with respect to the effect of a decreasing concentration of natural GTP, showed no major differences. A specific inhibitory effect of compound [Pt(dien)(N7-5'-GTP)] (which may pair the complementary base on the DNA strand, without being incorporated in the RNA by the T7 RNA polymerase) was evidenced. Our findings therefore suggest that RNA polymerases, unlike DNA polymerases, are unable to incorporate N7-platinated nucleotides into newly synthesized nucleic acids. In this respect, specifically designed N7-platinated nucleotides based compounds could be used in alternative to the classical platinum based drugs. This approach may offer a possible strategy to target specifically DNA, without affecting RNA, and is potentially able to better modulate pharmacological activity.


Assuntos
Antineoplásicos , RNA Polimerases Dirigidas por DNA , Desenho de Fármacos , Escherichia coli/metabolismo , Compostos Organoplatínicos , Ribonucleotídeos , Proteínas Virais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA Bacteriano/química , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/biossíntese , Óperon Lac , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , RNA Bacteriano/biossíntese , RNA Bacteriano/química , Ribonucleotídeos/síntese química , Ribonucleotídeos/química , Ribonucleotídeos/farmacologia , Proteínas Virais/química , Proteínas Virais/metabolismo
17.
J Inorg Biochem ; 157: 73-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26828286

RESUMO

The relevant adsorption of cis-[Pt(NH3)2(P2O7)](2-) (phosphaplatin) on hydroxyapatite nanocrystals (nHAP) was observed and studied in water suspension. Phosphaplatin cytotoxicity, which is very low for HeLa, MCF-7 and HS-5 cell lines could be enhanced, reaching that of cisplatin, by interaction with solid nHAP. This effect stems from nHAP ability to catalyze the phosphaplatin hydrolysis, producing the same hydrolytic species responsible for cisplatin antitumor activity.


Assuntos
Antineoplásicos/química , Cisplatino/química , Durapatita/química , Nanopartículas , Adsorção , Microscopia Eletrônica de Transmissão
18.
Food Chem ; 196: 601-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26593533

RESUMO

The metabolomic profile of blue crab (Callinectes sapidus) captured in the Acquatina lagoon (SE Italy) was compared to an autochthonous (Eriphia verrucosa) and to a commercial crab species (Cancer pagurus). Both lipid and aqueous extracts of raw claw muscle were analyzed by (1)H NMR spectroscopy and MVA (multivariate data analysis). Aqueous extracts were characterized by a higher inter-specific discriminating power compared to lipid fractions. Specifically, higher levels of glutamate, alanine and glycine characterized the aqueous extract of C. sapidus, while homarine, lactate, betaine and taurine characterized E. verrucosa and C. pagurus. On the other hand, only the signals of monounsaturated fatty acids distinguished the lipid profiles of the three crab species. These results support the commercial exploitation and the integration of the blue crab in human diet of European countries as an healthy and valuable seafood.


Assuntos
Braquiúros/química , Frutos do Mar/análise , Animais , Anomuros/química , Europa (Continente) , Humanos , Itália , Lipídeos/química , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Músculos/química
19.
Anticancer Res ; 35(2): 739-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25667453

RESUMO

BACKGROUND/AIM: A new platinum compound, (Pt(O,O'-acac)(γ-acac)(DMS)) (PtAcacDMS), has been shown to possess higher cytotoxic activity than cisplatin on several cancer and chemoresistant cell lines. The aim of the present study was to compare the nephrotoxic effects - particularly renal fibrogenesis- of PtAcacDMS and cisplatin in rats after the subcutaneous administration of a single dose (5 mg/Kg b.w., s.c.) of either compound to ten-day-old rats. MATERIALS AND METHODS: Control and treated rats were killed 1 day (PD11), 7 days (PD17), 21 days (PD31) and 40 days (PD50) after the injection. Kidneys were processed for light and electron microscopy, and platinum determination. Antibodies against E-cadherin (E-cad), vimentin (VIM) and α-smooth muscle actin (αSMA) were used to identify epithelial and mesenchymal cells. RESULTS AND CONCLUSION: Cisplatin produced progressive cortical fibrotic lesions displaying a variable number of VIM-positive tubules and interstitial αSMA-positive cells around. By contrast, PtAcacDMS induced a minimal number of histopathological changes, which declined in the adult samples, while the renal platinum content was generally higher after PtAcacDMS than after cisplatin. The present experimental model was proven suitable to investigate the occurrence of epithelial-mesenchymal transition (EMT) in renal fibrogenesis induced by the platinum-based compounds.


Assuntos
Cisplatino/toxicidade , Modelos Animais de Doenças , Fibrose/induzido quimicamente , Rim/efeitos dos fármacos , Micelas , Compostos de Platina/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Rim/patologia , Ratos , Ratos Wistar
20.
Br J Pharmacol ; 171(22): 5139-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24990093

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. EXPERIMENTAL APPROACH: We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. KEY RESULTS: Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 µmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 µmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 µmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. CONCLUSIONS AND IMPLICATIONS: [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/tratamento farmacológico , Cisplatino/farmacologia , Células Epiteliais/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Mama/citologia , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisplatino/farmacocinética , Células Epiteliais/metabolismo , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Compostos Organoplatínicos/farmacocinética , Platina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA