Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 240: 112099, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584559

RESUMO

Studies on the immobilization of oxindolimine­copper(II) or zinc(II) complexes [ML] in synthetic beidellite (BDL) clay were developed to obtain a suitable inorganic carrier capable of promoting the modified-release of metallopharmaceuticals. Previous investigations have shown that the studied metal complexes are promising antitumor agents, targeting DNA, mitochondria, and some proteins. They can bind to DNA, causing oxidative damage via formation of reactive oxygen species (ROS). In mitochondria they lead to a decrease in membrane potential, acting as decoupling agents, and therefore efficiently inducing apoptosis. Additionally, they inhibit human topoisomerase IB and cyclin dependent kinases, proteins involved in the cell cycle. BDL clays in the sodium form were synthesized under hydrothermal conditions and characterized by a set of physicochemical techniques while the BDL-[ML] hybrid materials were prepared by ion exchange method. The characterization of pristine clay and the obtained hybrids were performed by Infrared, Raman, electron paramagnetic resonance and energy dispersive X-ray spectroscopies, thermogravimetric analysis, scanning electron microscopy, X-ray powder diffraction, specific surface area, zeta potential and surface ionic charge measurements. The [ML] release assays under the same cell incubation conditions were performed monitoring metals by X-ray fluorescence. The BDL-[CuL] hybrid materials were stable and able to derail tumor HeLa cells, with corresponding IC50 values in the 0.11-0.41 mg mL-1 range. By contrast, the analogous hybrid samples of zinc(II) and the pristine BDL proved to be non-toxic facing the same cells. These results indicate a promising possibility of using synthetic beidellite as a carrier of such antitumor metal complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Argila , Células HeLa , Complexos de Coordenação/química , Zinco/química , DNA/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
2.
J Biol Inorg Chem ; 20(7): 1205-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26411703

RESUMO

Oxindolimine-copper(II) and zinc(II) complexes that previously have shown to induce apoptosis, with DNA and mitochondria as main targets, exhibit here significant inhibition of kinase CDK1/cyclin B protein. Copper species are more active than the corresponding zinc, and the free ligand shows to be less active, indicating a major influence of coordination in the process, and a further modulation by the coordinated ligand. Molecular docking and classical molecular dynamics provide a better understanding of the effectiveness and kinase inhibition mechanism by these compounds, showing that the metal complex provides a stronger interaction than the free ligand with the ATP-binding site. The metal ion introduces charge in the oxindole species, giving it a more rigid conformation that then becomes more effective in its interactions with the protein active site. Analogous experiments resulted in no significant effect regarding phosphatase inhibition. These results can explain the cytotoxicity of these metal complexes towards different tumor cells, in addition to its capability of binding to DNA, and decreasing membrane potential of mitochondria.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Quinases Ciclina-Dependentes/antagonistas & inibidores , Iminas/farmacologia , Simulação de Acoplamento Molecular , Zinco/química , Estabilidade de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Iminas/química , Indóis/química , Indóis/farmacologia , Ligantes , Modelos Moleculares , Oxindóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA