RESUMO
OBJECTIVE: We investigated intestinal permeability and fecal, plasma, and urine metabolomic profiles in methotrexate-treated active psoriatic arthritis (PsA) and how this related to clinical response following one sham or fecal microbiota transplantation (FMT). METHODS: This exploratory study is based on the FLORA trial cohort, in which 31 patients with moderate-to-high peripheral PsA disease activity, despite at least 3 months of methotrexate-treatment, were included in a 26-week, double-blind, 1:1 randomized, sham-controlled trial. Participants were randomly allocated to receive either one healthy donor FMT (n = 15) or sham (n = 16) via gastroscopy. The primary trial end point was the proportion of treatment failures through 26 weeks. We performed a lactulose-to-mannitol ratio (LMR) test at baseline (n = 31) and at week 26 (n = 26) to assess small intestinal permeability. Metabolomic profiles in fecal, plasma, and urine samples collected at baseline, weeks 4, 12, and 26 were measured using 1 H Nuclear Magnetic Resonance. RESULTS: Trial failures (n = 7) had significantly higher LMR compared with responders (n = 19) at week 26 (0.027 [0.017-0.33]) vs. 0.012 [0-0.064], P = 0.013), indicating increased intestinal permeability. Multivariate analysis revealed a significant model for responders (n = 19) versus failures (n = 12) at all time points based on their fecal (P < 0.0001) and plasma (P = 0.005) metabolomic profiles, whereas urine metabolomic profiles did not differ between groups (P = 1). Fecal N-acetyl glycoprotein GlycA correlated with Health Assessment Questionnaire Disability Index (coefficient = 0.50; P = 0.03) and fecal propionate correlated with American College of Rheumatology 20 response at week 26 (coefficient = 27, P = 0.02). CONCLUSION: Intestinal permeability and fecal and plasma metabolomic profiles of patients with PsA were associated with the primary clinical trial end point, failure versus responder.
RESUMO
A synthetic circuit in a biological system involves the designed assembly of genetic elements, biomolecules, or cells to create a defined function. These circuits are central in synthetic biology, enabling the reprogramming of cellular behavior and the engineering of cells with customized responses. In cancer therapeutics, engineering T cells with circuits have the potential to overcome the challenges of current approaches, for example, by allowing specific recognition and killing of cancer cells. Recent advances also facilitate engineering integrated circuits for the controlled release of therapeutic molecules at specified locations, for example, in a solid tumor. In this review, we discuss recent strategies and applications of synthetic receptor circuits aimed at enhancing immune cell functions for cancer immunotherapy. We begin by introducing the concept of circuits in networks at the molecular and cellular scales and provide an analysis of the development and implementation of several synthetic circuits in T cells that have the goal to overcome current challenges in cancer immunotherapy. These include specific targeting of cancer cells, increased T-cell proliferation, and persistence in the tumor microenvironment. By harnessing the power of synthetic biology, and the characteristics of certain circuit architectures, it is now possible to engineer a new generation of immune cells that recognize cancer cells, while minimizing off-target toxicities. We specifically discuss T-cell circuits for antigen density sensing. These circuits allow targeting of solid tumors that share antigens with normal tissues. Additionally, we explore designs for synthetic circuits that could control T-cell differentiation or T-cell fate as well as the concept of synthetic multicellular circuits that leverage cellular communication and division of labor to achieve improved therapeutic efficacy. As our understanding of cell biology expands and novel tools for genome, protein, and cell engineering are developed, we anticipate further innovative approaches to emerge in the design and engineering of circuits in immune cells.
Assuntos
Engenharia Genética , Biologia Sintética , Humanos , Imunoterapia , Linfócitos T , Comunicação CelularRESUMO
The intestinal microbiota has been proposed to influence human mental health and cognition through the gut-brain axis. Individuals experiencing recurrent Clostridioides difficile infection (rCDI) frequently report depressive symptoms, which are improved after fecal microbiota transplantation (FMT); however, mechanisms underlying this association are poorly understood. Short-chain fatty acids and carboxylic acids (SCCA) produced by the intestinal microbiota cross the blood brain barrier and have been proposed to contribute to gut-brain communication. We hypothesized that changes in serum SCCA measured before and after successful FMT for rCDI influences the inflammatory response of microglia, the resident immune cells of the central nervous system. Serum SCCA were quantified using gas chromatography-mass spectroscopy from 38 patients who participated in a randomized trial comparing oral capsule-vs colonoscopy-delivered FMT for rCDI, and quality of life was assessed by SF-36 at baseline, 4, and 12 weeks after FMT treatment. Successful FMT was associated with improvements in mental and physical health, as well as significant changes in a number of circulating SCCA, including increased butyrate, 2-methylbutyrate, valerate, and isovalerate, and decreased 2-hydroxybutyrate. Primary cultured microglia were treated with SCCA and the response to a pro-inflammatory stimulus was measured. Treatment with a combination of SCCA based on the post-FMT serum profile, but not single SCCA species, resulted in significantly reduced inflammatory response including reduced cytokine release, reduced nitric oxide release, and accumulation of intracellular lipid droplets. This suggests that both levels and diversity of SCCA may be an important contributor to gut-brain communication.
RESUMO
Faecal or biopsy samples are frequently used to analyse the gut microbiota, but issues remain with the provision and collection of such samples. Rectal swabs are widely-utilised in clinical practice and previous data demonstrate their potential role in microbiota analyses; however, studies to date have been heterogenous, and there are a particular lack of data concerning the utility of swabs for the analysis of the microbiota's functionality and metabolome. We compared paired stool and rectal swab samples from healthy individuals to investigate whether rectal swabs are a reliable proxy for faecal sampling. There were no significant differences in key alpha and beta diversity measures between swab and faecal samples, and inter-subject variability was preserved. Additionally, no significant differences were demonstrated in abundance of major annotated phyla. Inferred gut functionality using Tax4Fun2 showed excellent correlation between the two sampling techniques (Pearson's coefficient r = 0.9217, P < 0.0001). Proton nuclear magnetic resonance (1H NMR) spectroscopy enabled the detection of 20 metabolites, with overall excellent correlation identified between rectal swab and faecal samples for levels all metabolites collectively, although more variable degrees of association between swab and stool for levels of individual metabolites. These data support the utility of rectal swabs in both compositional and functional analyses of the gut microbiota.
Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fezes , Manejo de Espécimes/métodos , RNA Ribossômico 16SRESUMO
BACKGROUND: Almonds contain lipid, fiber, and polyphenols and possess physicochemical properties that affect nutrient bioaccessibility, which are hypothesized to affect gut physiology and microbiota. OBJECTIVES: To investigate the impact of whole almonds and ground almonds (almond flour) on fecal bifidobacteria (primary outcome), gut microbiota composition, and gut transit time. METHODS: Healthy adults (n = 87) participated in a parallel, 3-arm randomized controlled trial. Participants received whole almonds (56 g/d), ground almonds (56 g/d), or an isocaloric control in place of habitual snacks for 4 wk. Gut microbiota composition and diversity (16S rRNA gene sequencing), SCFAs (GC), volatile organic compounds (GC-MS), gut transit time (wireless motility capsule), stool output and gut symptoms (7-d diary) were measured at baseline and endpoint. The impact of almond form on particle size distribution (PSD) and predicted lipid release was measured (n = 31). RESULTS: Modified intention-to-treat analysis was performed on 79 participants. There were no significant differences in mean ± SD abundance of fecal bifidobacteria after consumption of whole almonds (8.7% ± 7.7%), ground almonds (7.8% ± 6.9%), or control (13.0% ± 10.2%; q = 0.613). Consumption of almonds (whole and ground pooled) resulted in higher mean ± SD butyrate (24.1 ± 15.0 µmol/g) than control (18.2 ± 9.1 µmol/g; P = 0.046). There was no effect of almonds on gut microbiota at the phylum level or diversity, gut transit time, stool consistency, or gut symptoms. Almond form (whole compared with ground) had no effect on study outcomes. Ground almonds resulted in significantly smaller PSD and higher mean ± SD predicted lipid release (10.4% ± 1.8%) than whole almonds (9.3% ± 2.0%; P = 0.017). CONCLUSIONS: Almond consumption has limited impact on microbiota composition but increases butyrate in adults, suggesting positive alterations to microbiota functionality. Almonds can be incorporated into the diet to increase fiber consumption without gut symptoms.This trial was registered at clinicaltrials.gov as NCT03581812.
Assuntos
Prunus dulcis , Adulto , Humanos , Prunus dulcis/química , Mastigação , RNA Ribossômico 16S , Fezes/microbiologia , Bifidobacterium , Butiratos/análiseRESUMO
BACKGROUND: Recurrent Clostridioides difficile infection (CDI) in patients with inflammatory bowel disease (IBD) is a clinical challenge. Fecal microbiota transplantation (FMT) has emerged as a recurrent CDI therapy. Anecdotal concerns exist regarding worsening of IBD activity; however, prospective data among IBD patients are limited. METHODS: Secondary analysis from an open-label, prospective, multicenter cohort study among IBD patients with 2 or more CDI episodes was performed. Participants underwent a single FMT by colonoscopy (250 mL, healthy universal donor). Secondary IBD-related outcomes included rate of de novo IBD flares, worsening IBD, and IBD improvement-all based on Mayo or Harvey-Bradshaw index (HBI) scores. Stool samples were collected for microbiome and targeted metabolomic profiling. RESULTS: Fifty patients enrolled in the study, among which 15 had Crohn's disease (mean HBI, 5.8 ± 3.4) and 35 had ulcerative colitis (mean partial Mayo score, 4.2 ± 2.1). Overall, 49 patients received treatment. Among the Crohn's disease cohort, 73.3% (11 of 15) had IBD improvement, and 4 (26.6%) had no disease activity change. Among the ulcerative colitis cohort, 62% (22 of 34) had IBD improvement, 29.4% (11 of 34) had no change, and 4% (1 of 34) experienced a de novo flare. Alpha diversity significantly increased post-FMT, and ulcerative colitis patients became more similar to the donor than Crohn's disease patients (P = 0.04). CONCLUSION: This prospective trial assessing FMT in IBD-CDI patients suggests IBD outcomes are better than reported in retrospective studies.
Assuntos
Infecções por Clostridium , Colite Ulcerativa , Doença de Crohn , Transplante de Microbiota Fecal , Clostridioides difficile , Infecções por Clostridium/terapia , Colite Ulcerativa/terapia , Doença de Crohn/terapia , Humanos , Estudos Prospectivos , Recidiva , Resultado do TratamentoRESUMO
BACKGROUND: Psoriasis is a chronic inflammatory disease of the skin affecting 2-3% of UK population. 30% of people affected by psoriasis will develop a distinct form of arthritis within 10 years of the skin condition onset. Although the pathogenesis of psoriatic arthritis is still unknown, there is a genetic predisposition triggered by environmental factors. Limited but convincing evidence link the gut microbiome to psoriatic arthritis. The Microbiome in Psoriatic ARThritis (Mi-PART) study propose is to characterise the microbiome-metabolic interface in patients affected by psoriatic arthritis to deepen our understanding of the pathogenesis of the disease. METHODS: This is a multicentre, prospective, observational study. Psoriatic arthritis (n = 65) and ankylosing spondylitis (n = 30) patients will be recruited in addition to a control group of healthy volunteers (n = 30). Patients eligibility will be evaluated against the Criteria for Psoriatic Arthritis (CASPAR), the Bath Ankylosing Spondylitis Activity Index (BASDAI) and the healthy volunteers who fulfil study inclusion and exclusion criteria. Information regarding their medical and medication history, demographics, diet and lifestyle will be collected. All the participants in the study will be asked to complete a 7-day food diary, to provide stool samples and to complete quality of life questionnaires. Routine clinical laboratory tests will be performed on blood and urine samples. Patients and healthy volunteers with gastrointestinal symptoms, previous history of cancer, gastrointestinal surgery in the previous 6 months or alcohol abuse will be excluded from the study. DISCUSSION: The aim of this trial is to characterise the microbiome of psoriatic arthritis patients and to compare it with microbiome of healthy volunteers and of patient with ankylosing spondylitis in order to define if different rheumatologic conditions are associated with characteristic microbiome profiles. Investigating the role of the microbiome in the development of psoriatic arthritis could deepen our understanding of the pathogenesis of the disease and potentially open the way to new therapies.