Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685108

RESUMO

Consumers are increasingly showing in maintaining a healthy dietary regimen, while food manufacturers are striving to develop products that possess an extended shelf-life to meet the demands of the market. Numerous studies have been conducted to identify natural sources that contribute to the preservation of perishable food derived from animals and plants, thereby prolonging its shelf life. Hence, the present study focuses on the identification of both natural sources of antioxidants and their applications in the development of novel food products, as well as their potential for enhancing product shelf-life. The origins of antioxidants in nature encompass a diverse range of products, including propolis, beebread, and extracts derived through various physical-chemical processes. Currently, there is a growing body of research being conducted to evaluate the effectiveness of natural antioxidants in the processing and preservation of various food products, including meat and meat products, milk and dairy products, bakery products, and bee products. The prioritization of discovering novel sources of natural antioxidants is a crucial concern for the meat, milk, and other food industries. Additionally, the development of effective methods for applying these natural antioxidants is a significant objective in the food industry.

2.
Foods ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36981260

RESUMO

The perceived level of risk associated with a food product can influence purchase and consumption decisions. Thus, current trends in food safety address an issue of general interest-the identification of healthy and economical alternatives to synthetic antioxidants that may have harmful effects on human health. Still, the processors' target is to increase the shelf life of food products using preserving substances. Natural antioxidants can be extracted and used in the food industry from different plants, such as blueberry, broccoli, chokeberry, cinnamon, ginger, olives, oregano, etc. The identification of the main natural antioxidant types that have been used in the food industry is very important in order to provide a comprehensive analysis of the researched topic. In this regard, the aim of this paper was to illustrate the positive aspects of using natural antioxidants with preservative roles in meat products, while, at the same time, highlighting the potential risks induced by these compounds. All of those aspects are correlated with the impact of sensorial attributes and the improvement of the nutritional value of meat products.

3.
Stem Cell Res Ther ; 10(1): 166, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31196173

RESUMO

BACKGROUND: Cell reprogramming is a promising avenue for cell-based therapies as it allows for the generation of multipotent, unipotent, or mature somatic cells without going through a pluripotent state. While the use of autologous cells is considered ideal, key challenges for their clinical translation include the ability to reproducibly generate sufficient quantities of cells within a therapeutically relevant time window. METHODS: We performed transfection of three distinct human somatic starting populations of cells with a non-integrating synthetic plasmid expressing Musashi 1 (MSI1), Neurogenin 2 (NGN2), and Methyl-CpG-Binding Domain 2 (MBD2). The resulting directly reprogrammed neural precursor cells (drNPCs) were examined in vitro using RT-qPCR, karyotype analysis, immunohistochemistry, and FACS at early and late time post-transfection. Electrophysiology (patch clamp) was performed on drNPC-derived neurons to determine their capacity to generate action potentials. In vivo characterization was performed following transplantation of drNPCs into two animal models (Shiverer and SCID/Beige mice), and the numbers, location, and differentiation profile of the transplanted cells were examined using immunohistochemistry. RESULTS: Human somatic cells can be directly reprogrammed within two weeks to neural precursor cells (drNPCs) by transient exposure to Msi1, Ngn2, and MBD2 using non-viral constructs. The drNPCs generate all three neural cell types (astrocytes, oligodendrocytes, and neurons) and can be passaged in vitro to generate large numbers of cells within four weeks. drNPCs can respond to in vivo differentiation and migration cues as demonstrated by their migration to the olfactory bulb and contribution to neurogenesis in vivo. Differentiation profiles of transplanted cells onto the corpus callosum of myelin-deficient mice reveal the production of oligodendrocytes and astrocytes. CONCLUSIONS: Human drNPCs can be efficiently and rapidly produced from donor somatic cells and possess all the important characteristics of native neural multipotent cells including differentiation into neurons, astrocytes, and oligodendrocytes, and in vivo neurogenesis and myelination.


Assuntos
Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletrofisiologia , Citometria de Fluxo , Humanos , Cariótipo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/citologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Remielinização/genética , Remielinização/fisiologia
4.
Philos Trans A Math Phys Eng Sci ; 374(2061)2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26755757

RESUMO

A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is interacting with the ammonium nitrate species on the CuxOy or other copper species on the surface of the zeolite particles, which reduces the ammonium nitrate blocking of the catalyst and thereby results in higher NO2 SCR activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA