Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(10): 1589-1604, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756529

RESUMO

GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipóxia/patologia , Oxigênio/metabolismo
2.
AAPS PharmSciTech ; 22(5): 191, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34169366

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-ß-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS "M1" controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/síntese química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Composição de Medicamentos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacocinética , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Poliésteres/administração & dosagem , Poliésteres/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética
3.
Cancers (Basel) ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008355

RESUMO

Despite modest improvements in survival in recent years, pancreatic adenocarcinoma remains a deadly disease with a 5-year survival rate of only 9%. These poor outcomes are driven by failure of early detection, treatment resistance, and propensity for early metastatic spread. Uncovering innovative therapeutic modalities to target the resistance mechanisms that make pancreatic cancer largely incurable are urgently needed. In this review, we discuss the immune composition of pancreatic tumors, including the counterintuitive fact that there is a significant inflammatory immune infiltrate in pancreatic cancer yet anti-tumor mechanisms are subverted and immune behaviors are suppressed. Here, we emphasize how immune cell interactions generate tumor progression and treatment resistance. We narrow in on tumor macrophage (TAM) spatial arrangement, polarity/function, recruitment, and origin to introduce a concept where interactions with tumor neutrophils (TAN) perpetuate the microenvironment. The sequelae of macrophage and neutrophil activities contributes to tumor remodeling, fibrosis, hypoxia, and progression. We also discuss immune mechanisms driving resistance to standard of care modalities. Finally, we describe a cadre of treatment targets, including those intended to overcome TAM and TAN recruitment and function, to circumvent barriers presented by immune infiltration in pancreatic adenocarcinoma.

5.
J Immunol ; 205(8): 2301-2311, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938724

RESUMO

Tie2-expressing monocytes/macrophages (TEMs) are a distinct subset of proangiogenic monocytes selectively recruited to tumors in breast cancer. Because of the hypoxic nature of solid tumors, we investigated if oxygen, via hypoxia-inducible transcription factors HIF-1α and HIF-2α, regulates TEM function in the hypoxic tumor microenvironment. We orthotopically implanted PyMT breast tumor cells into the mammary fat pads of syngeneic LysMcre, HIF-1α fl/fl /LysMcre, or HIF-2α fl/fl /LysMcre mice and evaluated the tumor TEM population. There was no difference in the percentage of tumor macrophages among the mouse groups. In contrast, HIF-1α fl/fl /LysMcre mice had a significantly smaller percentage of tumor TEMs compared with control and HIF-2α fl/fl /LysMcre mice. Proangiogenic TEMs in macrophage HIF-2α-deficient tumors presented significantly more CD31+ microvessel density but exacerbated hypoxia and tissue necrosis. Reduced numbers of proangiogenic TEMs in macrophage HIF-1α-deficient tumors presented significantly less microvessel density but tumor vessels that were more functional as lectin injection revealed more perfusion, and functional electron paramagnetic resonance analysis revealed more oxygen in those tumors. Macrophage HIF-1α-deficient tumors also responded significantly to chemotherapy. These data introduce a previously undescribed and counterintuitive prohypoxia role for proangiogenic TEMs in breast cancer which is, in part, suppressed by HIF-2α.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/irrigação sanguínea , Neoplasias Mamárias Experimentais/imunologia , Proteínas de Neoplasias/imunologia , Receptor TIE-2/imunologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Tumoral , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Macrófagos/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Proteínas de Neoplasias/genética , Oxigênio/imunologia , Receptor TIE-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA