Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874583

RESUMO

Semaphorin-Plexin signaling plays a major role in the tumor microenvironment (TME). In particular, Semaphorin 4D (SEMA4D) has been shown to promote tumor growth and metastasis; however, the role of its high-affinity receptor Plexin-B1 (PLXNB1), which is expressed in the TME, is poorly understood. In this study, we directly targeted PLXNB1 in the TME of triple-negative murine breast carcinoma to elucidate its relevance in cancer progression. We found that primary tumor growth, and metastatic dissemination were strongly reduced in PLXNB1-deficient mice, which showed longer survival. PLXNB1-loss in the TME induced a switch in the polarization of tumor-associated macrophages (TAMs) towards a pro-inflammatory M1 phenotype and enhanced the infiltration of CD8+ T lymphocytes both in primary tumors and in distant metastases. Moreover, PLXNB1-deficiency promoted a shift in the Th1/Th2 balance of the T-cell population and an antitumor gene signature, with the up-regulation of Icos, Perforin-1, Stat3 and Ccl5 in tumor infiltrating lymphocytes (TILs). We thus tested the translational relevance of TME re-programming driven by PLXNB1 inactivation for responsiveness to immunotherapy. Indeed, in the absence of PLXNB1, the efficacy of anti-PD-1 blockade was strongly enhanced, efficiently reducing tumor growth and distant metastasis. Consistent with this, pharmacological PLXNB1 blockade by systemic treatment with a specific inhibitor significantly hampered breast cancer growth and enhanced the antitumor activity of the anti-PD1 treatment in a preclinical model. Altogether, these data indicate that PLXNB1 signaling controls the antitumor immune response in the TME and highlight this receptor as a promising immune therapeutic target for metastatic breast cancers.

2.
Structure ; 32(5): 536-549.e5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460519

RESUMO

Overexpression of human epidermal growth factor receptor 2 (HER2) in breast and gastric cancers is associated with a poor prognosis, making it an important therapeutic target. Here, we establish a novel cancer-specific anti-HER2 antibody, H2Mab-214. H2Mab-214 reacts with HER2 on cancer cells, but unlike the therapeutic antibody trastuzumab, it does not react with HER2 on normal cells in flow cytometry measurements. A crystal structure suggests that H2Mab-214 recognizes a structurally disrupted region in the HER2 domain IV, which normally forms a ß-sheet. We show that this misfolding is inducible by site-directed mutagenesis mimicking the disulfide bond defects that also may occur in cancer cells, indicating that the local misfolding in the Cys-rich domain IV governs the cancer-specificity of H2Mab-214. Furthermore, we show that H2Mab-214 effectively suppresses tumor growth in xenograft mouse models. Our findings offer a potential strategy for developing cancer-specific therapeutic antibodies that target partially misfolded cell surface receptors.


Assuntos
Dobramento de Proteína , Receptor ErbB-2 , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor ErbB-2/metabolismo , Receptor ErbB-2/química , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Modelos Moleculares , Feminino , Cristalografia por Raios X , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/química , Trastuzumab/farmacologia , Trastuzumab/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico
3.
Nat Biomed Eng ; 7(2): 164-176, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36344661

RESUMO

Short half-lives in circulation and poor transport across the blood-brain barrier limit the utility of cytokines and growth factors acting as receptor agonists. Here we show that surrogate receptor agonists with longer half-lives in circulation and enhanced transport rates across the blood-brain barrier can be generated by genetically inserting macrocyclic peptide pharmacophores into the structural loops of the fragment crystallizable (Fc) region of a human immunoglobulin. We used such 'lasso-grafting' approach, which preserves the expression levels of the Fc region and its affinity for the neonatal Fc receptor, to generate Fc-based protein scaffolds with macrocyclic peptides binding to the receptor tyrosine protein kinase Met. The Met agonists dimerized Met, inducing biological responses that were similar to those induced by its natural ligand. Moreover, lasso-grafting of the Fc region of the mouse anti-transferrin-receptor antibody with Met-binding macrocyclic peptides enhanced the accumulation of the resulting Met agonists in brain parenchyma in mice. Lasso-grafting may allow for designer protein therapeutics with enhanced stability and pharmacokinetics.


Assuntos
Barreira Hematoencefálica , Peptídeos , Humanos , Animais , Camundongos , Encéfalo , Citocinas , Meia-Vida
4.
Sci Transl Med ; 14(632): eaax7706, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35171652

RESUMO

Cancer-specific cell surface antigens are ideal therapeutic targets for monoclonal antibody (mAb)-based therapy. Here, we report that multiple myeloma (MM), an incurable hematological malignancy, can be specifically targeted by an mAb that recognizes a ubiquitously present protein, CD98 heavy chain (hc) (also known as SLC3A2). We screened more than 10,000 mAb clones raised against MM cells and identified R8H283, an mAb that bound MM cells but not normal hematopoietic or nonhematopoietic cells. R8H283 specifically recognized CD98hc. R8H283 did not react with monomers of CD98hc; instead, it bound CD98hc in heterodimers with a CD98 light chain (CD98lc), a complex that functions as an amino acid transporter. CD98 heterodimers were abundant on MM cells and took up amino acids for constitutive production of immunoglobulin. Although CD98 heterodimers were also present on normal leukocytes, R8H283 did not react with them. The glycoforms of CD98hc present on normal leukocytes were distinct from those present on MM cells, which may explain the lack of R8H283 reactivity to normal leukocytes. R8H283 exerted anti-MM effects without damaging normal hematopoietic cells. These findings suggested that R8H283 is a candidate for mAb-based therapies for MM. In addition, our findings showed that a cancer-specific conformational epitope in a ubiquitous protein, which cannot be identified by transcriptome or proteome analyses, can be found by extensive screening of primary human tumor samples.


Assuntos
Anticorpos Monoclonais , Mieloma Múltiplo , Anticorpos Monoclonais/uso terapêutico , Humanos
5.
Nat Commun ; 12(1): 4012, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188035

RESUMO

Recognition of laminin by integrin receptors is central to the epithelial cell adhesion to basement membrane, but the structural background of this molecular interaction remained elusive. Here, we report the structures of the prototypic laminin receptor α6ß1 integrin alone and in complex with three-chain laminin-511 fragment determined via crystallography and cryo-electron microscopy, respectively. The laminin-integrin interface is made up of several binding sites located on all five subunits, with the laminin γ1 chain C-terminal portion providing focal interaction using two carboxylate anchor points to bridge metal-ion dependent adhesion site of integrin ß1 subunit and Asn189 of integrin α6 subunit. Laminin α5 chain also contributes to the affinity and specificity by making electrostatic interactions with large surface on the ß-propeller domain of α6, part of which comprises an alternatively spliced X1 region. The propeller sheet corresponding to this region shows unusually high mobility, suggesting its unique role in ligand capture.


Assuntos
Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Integrina alfa6beta1/metabolismo , Integrina beta1/metabolismo , Laminina/metabolismo , Sequência de Aminoácidos , Membrana Basal/metabolismo , Sítios de Ligação/fisiologia , Adesão Celular/fisiologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Conformação Proteica , Domínios Proteicos/fisiologia , Eletricidade Estática
6.
Nat Commun ; 12(1): 1543, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750839

RESUMO

Protein engineering has great potential for devising multifunctional recombinant proteins to serve as next-generation protein therapeutics, but it often requires drastic modifications of the parental protein scaffolds e.g., additional domains at the N/C-terminus or replacement of a domain by another. A discovery platform system, called RaPID (Random non-standard Peptides Integrated Discovery) system, has enabled rapid discovery of small de novo macrocyclic peptides that bind a target protein with high binding specificity and affinity. Capitalizing on the optimized binding properties of the RaPID-derived peptides, here we show that RaPID-derived pharmacophore sequences can be readily implanted into surface-exposed loops on recombinant proteins and maintain both the parental peptide binding function(s) and the host protein function. We refer to this protein engineering method as lasso-grafting and demonstrate that it can endow specific binding capacity toward various receptors into a diverse set of scaffolds that includes IgG, serum albumin, and even capsid proteins of adeno-associated virus, enabling us to rapidly formulate and produce bi-, tri-, and even tetra-specific binder molecules.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Engenharia de Proteínas/métodos , Proteínas do Capsídeo/química , Proteínas de Transporte/química , Linhagem Celular , Dependovirus , Humanos , Imunoglobulina G/química , Modelos Moleculares , Albumina Sérica/química , Bibliotecas de Moléculas Pequenas
7.
Nat Struct Mol Biol ; 26(5): 372-379, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036956

RESUMO

Wnt signaling plays fundamental roles in organogenesis, tissue regeneration and cancer, but high-resolution structural information of mammalian Wnt proteins is lacking. We solved a 2.8-Å resolution crystal structure of human Wnt3 in complex with mouse Frizzled 8 Cys-rich domain (CRD). Wnt3 grabs the receptor in a manner very similar to that found in Xenopus Wnt8 complexed with the same receptor. Unlike Xenopus Wnt8-bound CRD, however, Wnt3-bound CRD formed a symmetrical dimer in the crystal by exchanging the tip of the unsaturated acyl chain attached to each Wnt3, confirming the ability of Wnt and Frizzled CRD to form a 2:2 complex. The hypervariable 'linker' region of Wnt3 formed a ß-hairpin protrusion opposite from the Frizzled binding interface, consistent with its proposed role in the coreceptor recognition. Direct binding between this segment and the Wnt coreceptor LRP6 was confirmed, enabling us to build a structural model of the Wnt-Frizzled-LRP6 ternary complex.


Assuntos
Receptores Acoplados a Proteínas G/química , Proteína Wnt3/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Proteína Wnt3/metabolismo , Xenopus
8.
Nat Commun ; 9(1): 3380, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140003

RESUMO

N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a ß1-6-linked N-acetylglucosamine branch. ß1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.


Assuntos
Domínio Catalítico/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Neoplasias/patologia , Polissacarídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biocatálise , Cristalografia por Raios X , Desenho de Fármacos , Ensaios Enzimáticos , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/química , N-Acetilglucosaminiltransferases/genética , Neoplasias/tratamento farmacológico , Polissacarídeos/química , Especificidade por Substrato
9.
Protein Expr Purif ; 147: 94-99, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29550370

RESUMO

Peptide-based affinity tags are commonly used in recombinant production/purification of proteins, and are often preceded or followed by a protease recognition sequence to allow tag removal. We describe a rat monoclonal antibody 2H5 recognizing an undecapeptide tag called "eTev", which contains a recognition sequence for Tobacco Etch Virus (TEV) protease. In the crystal structure of 2H5-eTev complex, the long eTev peptide assumes compact α-helical conformation in the binding groove, exposing both ends to the solution. This architecture allowed us to connect eTev with another peptide tag called PA tag via linker sequence, ensuring the simultaneous access of two anti-tag antibodies. When this tandem double tag was attached at one end of various proteins, it enabled highly sensitive and protein-independent detection by sandwich ELISA. Utilizing this system during a rapid cell line screening, we succeeded in isolating stable cell clones expressing high level of mouse Wise protein.


Assuntos
Anticorpos Monoclonais/metabolismo , Endopeptidases/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Endopeptidases/química , Endopeptidases/genética , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Feminino , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Peptídeos/genética , Peptídeos/imunologia , Ligação Proteica , Domínios Proteicos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
10.
Sci Rep ; 7: 46174, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393893

RESUMO

Ectodomain shedding (shedding) is a post-translational modification, which liberates the extracellular domain of membrane proteins through juxtamembrane processing executed mainly by the ADAM (a disintegrin and metalloprotease) family of metalloproteases. Because shedding alters characteristics of cells in a rapid and irreversible manner, it should be strictly regulated. However, the molecular mechanisms determining membrane protein susceptibility to shedding (shedding susceptibility) are largely unknown. Here we report that alternative splicing can give rise to both shedding-susceptible and shedding-resistant CADM1 (cell adhesion molecule 1) variant proteins. We further show that O-glycans adjacent to the shedding cleavage site interfere with CADM1 shedding, and the only 33-bp alternative exon confers shedding susceptibility to CADM1 by inserting five non-glycosylatable amino acids between interfering O-glycans and the shedding cleavage site. These results demonstrate that shedding susceptibility of membrane protein can be determined at two different levels of its biosynthesis pathway, alternative splicing and O-glycosylation.


Assuntos
Processamento Alternativo/genética , Molécula 1 de Adesão Celular/química , Molécula 1 de Adesão Celular/genética , Proteína ADAM17/metabolismo , Processamento Alternativo/efeitos dos fármacos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Molécula 1 de Adesão Celular/metabolismo , Éxons/genética , Glicosilação/efeitos dos fármacos , Marcação por Isótopo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Proteômica , Células RAW 264.7 , Receptores Imunológicos/metabolismo , Treonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA