Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 653: 47-52, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857899

RESUMO

Redox regulation is a posttranslational modification based on the redox reaction of protein thiols. A small ubiquitous protein thioredoxin (Trx) plays a central role in redox regulation, but a unique redox-regulatory factor called NADPH-Trx reductase C (NTRC) is also found in plant chloroplasts and some cyanobacteria. Several important functions of NTRC have been suggested, but the mechanism for controlling NTRC activity remains undetermined. Cystathionine-ß-synthase X (CBSX) proteins have been previously shown to interact with NTRC physically. Based on these observations, this study biochemically investigated the functional interaction between CBSX proteins and NTRC from Arabidopsis thaliana in vitro. Consequently, we concluded that CBSX proteins act as negative regulators of NTRC in the presence of AMP.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cistationina/metabolismo , Cistationina beta-Sintase/metabolismo , Oxirredução , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(27): 16019-16026, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576684

RESUMO

The intracellular redox state is one of the key factors regulating various physiological phenomena in the cell. Monitoring this state is therefore important for understanding physiological homeostasis in cells. Various fluorescent sensor proteins have already been developed to monitor intracellular redox state. We also developed fluorescent redox sensor proteins named Oba-Q and Re-Q, the emissions of which are quenched under oxidized and reduced conditions, respectively. Although these sensors were useful to visualize the redox changes in the cell over time, they have the weakness that their emission signals are directly influenced by their in situ expression levels. To overcome this problem, we developed a redox sensor protein with a single excitation peak and dual variable emission peaks. This sensor protein shows green emission under oxidized conditions and blue emission under reduced conditions. We therefore named this sensor FROG/B, fluorescent protein with redox-dependent change in green/blue. By using this sensor, we successfully measured the changes in intracellular redox potentials in cyanobacterial cells quantitatively caused by light/dark transition just by calculating the ratio of emission between green and blue signals.


Assuntos
Técnicas Biossensoriais , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Anabaena , Glutationa/metabolismo , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Oxirredução
3.
Biochem J ; 475(6): 1091-1105, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29440317

RESUMO

Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first reaction in the oxidative pentose phosphate pathway. In green plant chloroplasts, G6PDH is a unique redox-regulated enzyme, since it is inactivated under the reducing conditions. This regulation is accomplished using a redox-active cysteine pair, which is conserved in plant G6PDH. The inactivation of this enzyme under conditions of light must be beneficial to prevent release of CO2 from the photosynthetic carbon fixation cycle. In the filamentous, heterocyst-forming, nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120 (Anabaena 7120), G6PDH plays a pivotal role in providing reducing power for nitrogenase, and its activity is also reported to be suppressed by reduction, though Anabaena G6PDH does not conserve the critical cysteines for regulation. Based on the thorough analyses of the redox regulation mechanisms of G6PDH from Anabaena 7120 and its activator protein OpcA, we found that m-type thioredoxin regulates G6PDH activity by changing the redox states of OpcA. Mass spectrometric analysis and mutagenesis studies indicate that Cys393 and Cys399 of OpcA are responsible for the redox regulation property of this protein. Moreover, in vivo analyses of the redox states of OpcA showed that more than half of the OpcA is present as an oxidized form, even under conditions of light, when cells are cultured under the nitrogen-fixing conditions. This redox regulation of OpcA might be necessary to provide reducing power for nitrogenase by G6PDH in heterocysts even during the day.


Assuntos
Anabaena , Proteínas de Bactérias/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Fixação de Nitrogênio , Tiorredoxinas/fisiologia , Anabaena/genética , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio/genética , Organismos Geneticamente Modificados , Oxirredução , Fotossíntese/genética , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA