Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Radiol Artif Intell ; 6(3): e230375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597784

RESUMO

Purpose To explore the stand-alone breast cancer detection performance, at different risk score thresholds, of a commercially available artificial intelligence (AI) system. Materials and Methods This retrospective study included information from 661 695 digital mammographic examinations performed among 242 629 female individuals screened as a part of BreastScreen Norway, 2004-2018. The study sample included 3807 screen-detected cancers and 1110 interval breast cancers. A continuous examination-level risk score by the AI system was used to measure performance as the area under the receiver operating characteristic curve (AUC) with 95% CIs and cancer detection at different AI risk score thresholds. Results The AUC of the AI system was 0.93 (95% CI: 0.92, 0.93) for screen-detected cancers and interval breast cancers combined and 0.97 (95% CI: 0.97, 0.97) for screen-detected cancers. In a setting where 10% of the examinations with the highest AI risk scores were defined as positive and 90% with the lowest scores as negative, 92.0% (3502 of 3807) of the screen-detected cancers and 44.6% (495 of 1110) of the interval breast cancers were identified with AI. In this scenario, 68.5% (10 987 of 16 040) of false-positive screening results (negative recall assessment) were considered negative by AI. When 50% was used as the cutoff, 99.3% (3781 of 3807) of the screen-detected cancers and 85.2% (946 of 1110) of the interval breast cancers were identified as positive by AI, whereas 17.0% (2725 of 16 040) of the false-positive results were considered negative. Conclusion The AI system showed high performance in detecting breast cancers within 2 years of screening mammography and a potential for use to triage low-risk mammograms to reduce radiologist workload. Keywords: Mammography, Breast, Screening, Convolutional Neural Network (CNN), Deep Learning Algorithms Supplemental material is available for this article. © RSNA, 2024 See also commentary by Bahl and Do in this issue.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Detecção Precoce de Câncer , Mamografia , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/diagnóstico , Feminino , Mamografia/métodos , Noruega/epidemiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Detecção Precoce de Câncer/métodos , Idoso , Adulto , Programas de Rastreamento/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
2.
Radiology ; 309(1): e230989, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37847135

RESUMO

Background Few studies have evaluated the role of artificial intelligence (AI) in prior screening mammography. Purpose To examine AI risk scores assigned to screening mammography in women who were later diagnosed with breast cancer. Materials and Methods Image data and screening information of examinations performed from January 2004 to December 2019 as part of BreastScreen Norway were used in this retrospective study. Prior screening examinations from women who were later diagnosed with cancer were assigned an AI risk score by a commercially available AI system (scores of 1-7, low risk of malignancy; 8-9, intermediate risk; and 10, high risk of malignancy). Mammographic features of the cancers based on the AI score were also assessed. The association between AI score and mammographic features was tested with a bivariate test. Results A total of 2787 prior screening examinations from 1602 women (mean age, 59 years ± 5.1 [SD]) with screen-detected (n = 1016) or interval (n = 586) cancers showed an AI risk score of 10 for 389 (38.3%) and 231 (39.4%) cancers, respectively, on the mammograms in the screening round prior to diagnosis. Among the screen-detected cancers with AI scores available two screening rounds (4 years) before diagnosis, 23.0% (122 of 531) had a score of 10. Mammographic features were associated with AI score for invasive screen-detected cancers (P < .001). Density with calcifications was registered for 13.6% (43 of 317) of screen-detected cases with a score of 10 and 4.6% (15 of 322) for those with a score of 1-7. Conclusion More than one in three cases of screen-detected and interval cancers had the highest AI risk score at prior screening, suggesting that the use of AI in mammography screening may lead to earlier detection of breast cancers. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Mehta in this issue.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Mamografia/métodos , Estudos Retrospectivos , Inteligência Artificial , Detecção Precoce de Câncer/métodos , Fatores de Risco , Programas de Rastreamento/métodos
3.
Eur Radiol ; 33(10): 6689-6717, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37171491

RESUMO

OBJECTIVES: Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objectives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the clinical applications of ML in liver CT imaging? METHODS: A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string focused on studies containing content relating to artificial intelligence, liver, and computed tomography. RESULTS: One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis without clinicians' intervention in majority of studies while in newer studies the fusion of ML method with clinical intervention have been identified. Several were documented to perform very accurately on reliable but small data. Most models identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classification, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation of chemotherapy. CONCLUSION: Several studies attempted to provide transparent result of the model. To make the model convenient for a clinical application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to cooperate with health professionals to ensure this. KEY POINTS: • ML shows great potential for CT liver image tasks such as pixel-wise segmentation and classification of liver and liver lesions, fibrosis staging, metastasis prediction, and retrieval of relevant liver lesions from similar cases of other patients. • Despite presenting the result is not standardized, many studies have attempted to provide transparent results to interpret the machine learning method performance in the literature. • Prospective studies are in urgent call for clinical validation of ML method, preferably carried out by cooperation between clinicians and computer scientists.


Assuntos
Inteligência Artificial , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Aprendizado de Máquina , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos
4.
IEEE J Biomed Health Inform ; 26(4): 1794-1801, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34665748

RESUMO

Surgical site infections are hospital-acquired infections resulting in severe risk for patients and significantly increased costs for healthcare providers. In this work, we show how to leverage irregularly sampled preoperative blood tests to predict, on the day of surgery, a future surgical site infection and its severity. Our dataset is extracted from the electronic health records of patients who underwent gastrointestinal surgery and developed either deep, shallow or no infection. We represent the patients using the concentrations of fourteen common blood components collected over the four weeks preceding the surgery partitioned into six time windows. A gradient boosting based classifier trained on our new set of features reports an AUROC of 0.991 for predicting a postoperative infection and and AUROC of 0.937 for classifying the severity of the infection. Further analyses support the clinical relevance of our approach as the most important features describe the nutritional status and the liver function over the two weeks prior to surgery.


Assuntos
Registros Eletrônicos de Saúde , Infecção da Ferida Cirúrgica , Previsões , Humanos , Fatores de Risco , Infecção da Ferida Cirúrgica/diagnóstico
5.
Comput Math Methods Med ; 2019: 2059851, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915154

RESUMO

This study describes a novel approach to solve the surgical site infection (SSI) classification problem. Feature engineering has traditionally been one of the most important steps in solving complex classification problems, especially in cases with temporal data. The described novel approach is based on abstraction of temporal data recorded in three temporal windows. Maximum likelihood L1-norm (lasso) regularization was used in penalized logistic regression to predict the onset of surgical site infection occurrence based on available patient blood testing results up to the day of surgery. Prior knowledge of predictors (blood tests) was integrated in the modelling by introduction of penalty factors depending on blood test prices and an early stopping parameter limiting the maximum number of selected features used in predictive modelling. Finally, solutions resulting in higher interpretability and cost-effectiveness were demonstrated. Using repeated holdout cross-validation, the baseline C-reactive protein (CRP) classifier achieved a mean AUC of 0.801, whereas our best full lasso model achieved a mean AUC of 0.956. Best model testing results were achieved for full lasso model with maximum number of features limited at 20 features with an AUC of 0.967. Presented models showed the potential to not only support domain experts in their decision making but could also prove invaluable for improvement in prediction of SSI occurrence, which may even help setting new guidelines in the field of preoperative SSI prevention and surveillance.


Assuntos
Proteína C-Reativa/análise , Análise Custo-Benefício , Informática Médica/métodos , Infecção da Ferida Cirúrgica/diagnóstico , Infecção da Ferida Cirúrgica/economia , Algoritmos , Área Sob a Curva , Interpretação Estatística de Dados , Árvores de Decisões , Feminino , Trato Gastrointestinal/cirurgia , Humanos , Funções Verossimilhança , Modelos Logísticos , Masculino , Noruega , Período Pré-Operatório , Análise de Regressão , Reprodutibilidade dos Testes , Fatores de Risco , Fatores de Tempo
6.
Comput Methods Programs Biomed ; 152: 105-114, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054250

RESUMO

OBJECTIVES: Postoperative delirium is a common complication after major surgery among the elderly. Despite its potentially serious consequences, the complication often goes undetected and undiagnosed. In order to provide diagnosis support one could potentially exploit the information hidden in free text documents from electronic health records using data-driven clinical decision support tools. However, these tools depend on labeled training data and can be both time consuming and expensive to create. METHODS: The recent learning with anchors framework resolves this problem by transforming key observations (anchors) into labels. This is a promising framework, but it is heavily reliant on clinicians knowledge for specifying good anchor choices in order to perform well. In this paper we propose a novel method for specifying anchors from free text documents, following an exploratory data analysis approach based on clustering and data visualization techniques. We investigate the use of the new framework as a way to detect postoperative delirium. RESULTS: By applying the proposed method to medical data gathered from a Norwegian university hospital, we increase the area under the precision-recall curve from 0.51 to 0.96 compared to baselines. CONCLUSIONS: The proposed approach can be used as a framework for clinical decision support for postoperative delirium.


Assuntos
Delírio/diagnóstico , Registros Eletrônicos de Saúde , Complicações Pós-Operatórias , Idoso , Sistemas de Apoio a Decisões Clínicas , Delírio/complicações , Humanos , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA