Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Front Immunol ; 15: 1335302, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370412

RESUMO

Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Linhagem Celular Tumoral , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo
3.
Viruses ; 14(7)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35891458

RESUMO

Human papillomaviruses (HPVs) inflict a significant burden on the human population. The clinical manifestations caused by high-risk HPV types are cancers at anogenital sites, including cervical cancer, as well as head and neck cancers. Host cell defense mechanisms such as autophagy are initiated upon HPV entry. At the same time, the virus modulates cellular antiviral processes and structures such as promyelocytic leukemia nuclear bodies (PML NBs) to enable infection. Here, we uncover the autophagy adaptor p62, also known as p62/sequestosome-1, as a novel proviral factor in infections by the high-risk HPV type 16 (HPV16). Proteomics, imaging and interaction studies of HPV16 pseudovirus-treated HeLa cells display that p62 is recruited to virus-filled endosomes, interacts with incoming capsids, and accompanies the virus to PML NBs, the sites of viral transcription and replication. Cellular depletion of p62 significantly decreased the delivery of HPV16 viral DNA to PML NBs and HPV16 infection rate. Moreover, the absence of p62 leads to an increase in the targeting of viral components to autophagic structures and enhanced degradation of the viral capsid protein L2. The proviral role of p62 and formation of virus-p62-PML hybrid bodies have also been observed in human primary keratinocytes, the HPV target cells. Together, these findings suggest the previously unrecognized virus-induced formation of p62-PML hybrid bodies as a viral mechanism to subvert the cellular antiviral defense, thus enabling viral gene expression.


Assuntos
Papillomavirus Humano 16 , Infecções por Papillomavirus , Antivirais , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Papillomaviridae/metabolismo , Proteína da Leucemia Promielocítica/genética
4.
Viruses ; 13(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960729

RESUMO

During initial infection, human papillomaviruses (HPV) take an unusual trafficking pathway through their host cell. It begins with a long period on the cell surface, during which the capsid is primed and a virus entry platform is formed. A specific type of clathrin-independent endocytosis and subsequent retrograde trafficking to the trans-Golgi network follow this. Cellular reorganization processes, which take place during mitosis, enable further virus transport and the establishment of infection while evading intrinsic cellular immune defenses. First, the fragmentation of the Golgi allows the release of membrane-encased virions, which are partially protected from cytoplasmic restriction factors. Second, the nuclear envelope breakdown opens the gate for these virus-vesicles to the cell nucleus. Third, the dis- and re-assembly of the PML nuclear bodies leads to the formation of modified virus-associated PML subnuclear structures, enabling viral transcription and replication. While remnants of the major capsid protein L1 and the viral DNA remain in a transport vesicle, the viral capsid protein L2 plays a crucial role during virus entry, as it adopts a membrane-spanning conformation for interaction with various cellular proteins to establish a successful infection. In this review, we follow the oncogenic HPV type 16 during its long journey into the nucleus, and contrast pro- and antiviral processes.


Assuntos
Células Epiteliais/virologia , Papillomavirus Humano 16/fisiologia , Infecções por Papillomavirus/virologia , Internalização do Vírus , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Endocitose , Papillomavirus Humano 16/genética , Humanos , Infecções por Papillomavirus/fisiopatologia , Rede trans-Golgi/virologia
5.
Med Microbiol Immunol ; 209(4): 461-471, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32385608

RESUMO

Human papillomaviruses (HPV) are causative agents of various tumours such as cervical cancer. HPV binding to the cell surface of keratinocytes leads to virus endocytosis at tetraspanin enriched microdomains. Complex interactions of the capsid proteins with host proteins as well as ADAM17-dependent ERK1/2 signal transduction enable the entry platform assembly of the oncogenic HPV type 16. Here, we studied the importance of tetraspanin CD9, also known as TSPAN29, in HPV16 infection of different epithelial cells. We found that both overexpression and loss of the tetraspanin decreased infection rates in cells with low endogenous CD9 levels, while reduction of CD9 expression in keratinocytes that exhibit high-CD9 protein amounts, led to an increase of infection. Therefore, we concluded that low-CD9 supports infection. Moreover, we found that changes in CD9 amounts affect the shedding of the ADAM17 substrate transforming growth factor alpha (TGFα) and the downstream phosphorylation of ERK. These effects correlate with those on infection rates suggesting that a specific CD9 optimum promotes ADAM17 activity, ERK signalling and virus infection. Together, our findings implicate that CD9 regulates HPV16 infection through the modulation of ADAM17 sheddase activity.


Assuntos
Proteína ADAM17/metabolismo , Sistema de Sinalização das MAP Quinases , Infecções por Papillomavirus/metabolismo , Tetraspanina 29/metabolismo , Proteína ADAM17/genética , Endocitose , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HaCaT , Células HeLa , Papillomavirus Humano 16 , Humanos , Queratinócitos/virologia , Infecções por Papillomavirus/virologia , Tetraspanina 29/genética , Fator de Crescimento Transformador alfa/metabolismo , Internalização do Vírus
6.
Sci Rep ; 10(1): 5356, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32210347

RESUMO

During cell invasion, human papillomaviruses use large CD151 patches on the cell surface. Here, we studied whether these patches are defined architectures with features for virus binding and/or internalization. Super-resolution microscopy reveals that the patches are assemblies of closely associated nanoclusters of CD151, integrin α3 and integrin α6. Integrin α6 is required for virus attachment and integrin α3 for endocytosis. We propose that CD151 organizes viral entry platforms with different types of integrin clusters for different functionalities. Since numerous viruses use tetraspanin patches, we speculate that this building principle is a blueprint for cell-surface architectures utilized by viral particles.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Papillomavirus Humano 16/patogenicidade , Integrina alfa3/metabolismo , Integrina alfa6/metabolismo , Internalização do Vírus , Actinas/metabolismo , Linhagem Celular , Humanos , Integrina alfa3/genética , Integrina alfa6/genética , Queratinócitos/virologia , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Tetraspanina 24/metabolismo , Vírion/metabolismo , Vírion/patogenicidade
7.
Elife ; 82019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31107240

RESUMO

Oncogenic human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors, a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal-regulated kinases (ERK1/2) pathway by the shedding of growth factors which triggers the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.


Assuntos
Proteína ADAM17/genética , Infecções por Papillomavirus/genética , Tetraspanina 24/genética , Carcinogênese/genética , Membrana Celular/virologia , Endocitose/genética , Receptores ErbB/genética , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/patogenicidade , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Sistema de Sinalização das MAP Quinases/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Vírion/genética , Vírion/patogenicidade , Internalização do Vírus
8.
Papillomavirus Res ; 7: 135-137, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30946955

RESUMO

Over the last two decades many host cell proteins have been described to be involved in the process of infectious entry of oncogenic human papillomaviruses (HPV). After initial binding and priming of the capsid, a sequence of events on the cell surface precedes the formation of the HPV entry platform. It has been shown that the virus-associated entry complex consists of membrane organizers, tetraspanins CD151 and CD63, and their associated partner proteins such as integrins, growth factor receptors, and the annexin A2 heterotetramer. Further recruitment of cytoplasmic factors such as the obscurin-like protein 1 and actin results in a non-canonical clathrin-independent endocytosis of the virus. Internalized viruses are then routed to multivesicular bodies for capsid disassembly. This early trafficking again involves annexins, and tetraspanin proteins. In this review, we summarize the current knowledge about HPV16 endocytosis and the subsequent endosomal trafficking. Moreover, we propose a model on how tetraspanins and annexins organize the spatial accumulation of HPV16-associated molecules, the recruitment of cytoplasmic trafficking factors, and the L2 membrane penetration to trigger virus entry.


Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/fisiologia , Infecções por Papillomavirus/virologia , Internalização do Vírus , Transporte Biológico , Humanos
9.
Int J Mol Sci ; 19(10)2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279342

RESUMO

Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Papillomavirus Humano 16/fisiologia , Tetraspaninas/antagonistas & inibidores , Citomegalovirus/efeitos dos fármacos , Células HeLa , Papillomavirus Humano 16/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Masculino , Peptídeos/farmacologia , Tetraspaninas/química , Tetraspaninas/metabolismo , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA